60-Nd-142
60-Nd-142 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6025
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
A.Zukeran.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below 26.0 keV
Evaluation for JENDL-2 was made by mainly on the basis of
the data measured by Tellier/1/ and Musgrove et al./2/
Resonance energies were adjusted to those of Tellier.
Average radiation widths were assumed to be 0.078 eV for
s-wave and some large p-wave resonances and to be 0.046 eV
for p-wave ones.
For JENDL-3, parameters of a negative resonance was modified
so as to reproduce the thermal capture cross section
of 18.7+-0.7 barns/3/ and the resonance integral. However,
the calculated resonance integral is still too small.
For JENDL-3.2, these resonance parameters were modified so
as to reproduce the capture area data measured at ORNL, by
taking account of the correction factor (0.967) announced by
Allen et al./4/. The parameters of a negative resonance
and scattering radius were adjuseted to get better agreement
with recommended thermal cross sections/5/.
In JENDL-4, the data for 2.2 - 20.77 keV were updated by
using the capture area and g*Gamma_n data measured by
Wisshak et al./6/ Angulara momenta L and J remain
unchanged from JENDL-3.3.
Unresolved resonance region : 26.0 keV - 200.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /7/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /8/ and CCONE /9/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 2.6423e+01
Elastic 7.7159e+00
n,gamma 1.8707e+01 8.5630e+00
n,alpha 1.5270e-05
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /9/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /9/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /9/.
MT= 22 (n,na) cross section
Calculated with CCONE code /9/.
MT= 28 (n,np) cross section
Calculated with CCONE code /9/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /9/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /9/.
MT=102 Capture cross section
Calculated with CCONE code /9/.
MT=103 (n,p) cross section
Calculated with CCONE code /9/.
MT=104 (n,d) cross section
Calculated with CCONE code /9/.
MT=105 (n,t) cross section
Calculated with CCONE code /9/.
MT=106 (n,He3) cross section
Calculated with CCONE code /9/.
MT=107 (n,a) cross section
Calculated with CCONE code /9/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /9/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /9/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /9/.
MT= 22 (n,na) reaction
Calculated with CCONE code /9/.
MT= 28 (n,np) reaction
Calculated with CCONE code /9/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /9/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /9/.
MT=102 Capture reaction
Calculated with CCONE code /9/.
*****************************************************************
Nuclear Model Calculation with CCONE code /9/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,3,8 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./10/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./11/
deuteron omp: Lohr,J.M. and Haeberli,W./12/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/
alpha omp: McFadden,L. and Satchler,G.R./14/
(+) omp parameters were modified.
2) Two-component exciton model/15/
* Global parametrization of Koning-Duijvestijn/16/
was used.
* Gamma emission channel/17/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/18/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/19/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/20/,/21/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Nd-142
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 1.57578 2 + *
2 2.08394 3 - *
3 2.10079 4 + *
4 2.20931 6 +
5 2.21749 0 +
6 2.24400 1 -
7 2.34000 4 -
8 2.38434 2 + *
9 2.43717 4 +
10 2.51389 5 +
11 2.51500 1 -
12 2.52900 1 +
13 2.54728 3 +
14 2.58309 2 +
15 2.58555 1 +
16 2.65600 0 +
17 2.73726 4 +
18 2.77600 1 -
19 2.84586 2 +
20 2.87300 4 +
21 2.88631 6 +
22 2.95800 0 +
23 2.97590 5 -
24 2.98310 0 +
25 3.00997 4 +
26 3.04520 2 +
27 3.08106 4 +
28 3.08585 5 +
29 3.12806 2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179
Nd-142 15.0000 2.0140 -1.2557 0.6895 0.7987 6.4278
Nd-141 17.8113 1.0106 -0.4633 0.5388 0.1405 4.2362
Nd-140 17.0742 2.0284 0.1378 0.5639 0.9372 5.6042
Pr-142 16.4000 0.0000 -0.4377 0.7390 -2.6336 6.4135
Pr-141 16.4637 1.0106 -1.2280 0.6590 -0.3966 5.5793
Pr-140 16.9753 0.0000 -0.5433 0.5678 -0.9137 3.4023
Pr-139 16.2632 1.0178 0.3167 0.5797 -0.0663 4.6220
Ce-141 17.9000 1.0106 -1.0773 0.4985 0.5829 3.4550
Ce-140 17.0742 2.0284 -1.9470 0.5674 1.4861 4.9920
Ce-139 15.5000 1.0178 -1.1255 0.5922 0.4151 4.0889
Ce-138 16.8661 2.0430 -0.4123 0.5781 1.0263 5.6162
Ce-137 18.4300 1.0252 0.5020 0.5105 0.0280 4.2432
--------------------------------------------------------
Table 3. Gamma-ray strength function for Nd-143
--------------------------------------------------------
* E1: ER = 15.01 (MeV) EG = 4.75 (MeV) SIG = 349.00 (mb)
* M1: ER = 7.84 (MeV) EG = 4.00 (MeV) SIG = 0.70 (mb)
* E2: ER = 12.05 (MeV) EG = 4.39 (MeV) SIG = 3.41 (mb)
--------------------------------------------------------
References
1) Tellier, H.: CEA-N-1459 (1971).
2) Musgrove, A.R. de L., et al.: AEEC/E401 (1977).
3) Fedorova, A.F., et al.: Proc. 3rd All-union Conf. on Neutron
Physics, Kiev 1975, Vol. 1, 169.
4) Allen, B.J., et al.: Nucl. Sci. Eng., 82, 230 (1982).
5) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
6) Wisshak, K., et al.: Phys. Rev., C57, 3452 (1998).
7) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
8) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
9) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
10) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
11) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
12) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
13) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
14) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
15) Kalbach,C.: Phys. Rev. C33, 818 (1986).
16) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
17) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
18) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
19) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
20) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
21) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).