60-Nd-146
60-Nd-146 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6037
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
A.Zukeran,K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below 10 keV
Resonance energies were taken from Tellier/1/ and
Musgrove et al./2/ Neutron widths were adopted from
Tellier, and radiation widths were deduced from capture
areas measured by Musgrove et al. The average radiation
widths were assumed to be 0.051 eV for s-wave resonances and
0.040 eV for p-wave ones. A negative resonance was added so
as to reproduce the capture cross section of 1.4+-0.1 barns
at 0.0253 eV/3/.
In JENDL-4, the parameters at 359.9 eV were replaced with
those obtained by Barry et al./4/ The parameters for the
negative resonance were re-adjusted.
Unresolved resonance region : 10.0 keV - 200.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /5/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /6/ and CCONE /7/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.1281e+01
Elastic 9.7909e+00
n,gamma 1.4901e+00 2.6989e+00
n,alpha 1.4564e-07
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /7/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /7/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /7/.
MT= 22 (n,na) cross section
Calculated with CCONE code /7/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /7/.
MT= 28 (n,np) cross section
Calculated with CCONE code /7/.
MT= 29 (n,n2a) cross section
Calculated with CCONE code /7/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /7/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /7/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /7/.
MT=102 Capture cross section
Calculated with CCONE code /7/.
MT=103 (n,p) cross section
Calculated with CCONE code /7/.
MT=104 (n,d) cross section
Calculated with CCONE code /7/.
MT=105 (n,t) cross section
Calculated with CCONE code /7/.
MT=106 (n,He3) cross section
Calculated with CCONE code /7/.
MT=107 (n,a) cross section
Calculated with CCONE code /7/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /7/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /7/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /7/.
MT= 22 (n,na) reaction
Calculated with CCONE code /7/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /7/.
MT= 28 (n,np) reaction
Calculated with CCONE code /7/.
MT= 29 (n,n2a) reaction
Calculated with CCONE code /7/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /7/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /7/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /7/.
MT=102 Capture reaction
Calculated with CCONE code /7/.
*****************************************************************
Nuclear Model Calculation with CCONE code /7/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,3,4 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./8/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./9/
deuteron omp: Lohr,J.M. and Haeberli,W./10/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
alpha omp: McFadden,L. and Satchler,G.R./12/
(+) omp parameters were modified.
2) Two-component exciton model/13/
* Global parametrization of Koning-Duijvestijn/14/
was used.
* Gamma emission channel/15/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/16/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/17/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/18/,/19/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Nd-146
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.45377 2 + *
2 0.91540 0 +
3 1.04222 4 + *
4 1.18962 3 - *
5 1.30310 2 +
6 1.37681 1 -
7 1.47059 2 +
8 1.51752 5 -
9 1.57200 0 +
10 1.60257 0 +
11 1.68800 2 -
12 1.69676 0 +
13 1.74496 4 +
14 1.76940 2 -
15 1.77716 3 +
16 1.78002 6 +
17 1.78730 2 +
18 1.81200 1 -
19 1.83400 2 +
20 1.88470 3 -
21 1.90534 2 +
22 1.91880 4 +
23 1.97845 2 +
24 1.98892 4 +
25 2.02700 1 -
26 2.02942 7 -
27 2.04553 4 -
28 2.06900 5 -
29 2.07259 3 -
30 2.08352 6 +
31 2.09000 0 +
32 2.09579 4 +
33 2.11945 2 +
34 2.14386 2 +
35 2.14895 0 +
36 2.16600 3 -
37 2.19728 2 +
38 2.20836 2 +
39 2.21975 3 +
40 2.22500 1 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470
Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542
Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189
Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190
Pr-146 17.5893 0.0000 2.4188 0.5462 -1.6453 4.0472
Pr-145 16.8637 0.9965 1.7883 0.6002 -0.8883 5.5766
Pr-144 15.5000 0.0000 0.9153 0.6715 -1.9662 5.0412
Pr-143 16.6639 1.0035 0.4682 0.6161 -0.5920 5.4208
Ce-145 18.2180 0.9965 1.7406 0.5686 -0.8969 5.4793
Ce-144 17.4894 2.0000 1.0129 0.5822 0.3675 6.2813
Ce-143 19.6000 1.0035 0.4100 0.4774 0.1189 3.9645
Ce-142 18.9500 2.0140 -0.3155 0.5558 0.6875 5.9346
Ce-141 17.9000 1.0106 -1.0773 0.4985 0.5829 3.4550
Ce-140 17.0742 2.0284 -1.9470 0.5674 1.4861 4.9920
--------------------------------------------------------
Table 3. Gamma-ray strength function for Nd-147
--------------------------------------------------------
K0 = 1.800 E0 = 4.500 (MeV)
* E1: ER = 13.27 (MeV) EG = 3.63 (MeV) SIG = 120.27 (mb)
ER = 15.83 (MeV) EG = 5.08 (MeV) SIG = 240.54 (mb)
* M1: ER = 7.77 (MeV) EG = 4.00 (MeV) SIG = 1.10 (mb)
* E2: ER = 11.94 (MeV) EG = 4.35 (MeV) SIG = 3.35 (mb)
--------------------------------------------------------
References
1) Tellier, H.: CEA-N-1459 (1971).
2) Musgrove, A.R. de L., et al.: AEEC/E401 (1977).
3) Fedorova, A.F., et al.: "Proc. 3rd All-union Conf. on Neutron
Physics, Kiev 1975", Vol. 1, 169.
4) Barry, D.P. et al.: Nucl. Sci. Eng., 153, 8 (2006).
5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
6) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
13) Kalbach,C.: Phys. Rev. C33, 818 (1986).
14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).