60-Nd-147
60-Nd-147 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6040
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonances
RESOLVED RESONANCE REGION (MLBW FORMULA) : BELOW 36 EV
RESONANCE ENERGIES WERE BASED ON THE DATA OF REF./1/.
NEUTRON WIDTHS WERE DERIVED FROM THE DATA OF 2*G*GAMMA(N)
AND THE TOTAL SPIN J WHICH WAS ASSUMED TO BE 3 FOR ALL THE
RESONANCES. AVERAGE RADIATION WIDTH WAS ASSUMED TO BE
0.075 EV/1/. THE SCATTERING RADIUS WAS TAKEN FROM THE
SYSTEMATICS SHOWN IN REF./1/.
A negative resonance was added so as to reproduce the
thermal capture cross section suggested by Suyama and
Mochizuki /2/.
Unresolved resonance region : 36.0 eV - 120.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /3/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /4/ and CCONE /5/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 2.2307e+02
Elastic 7.9547e+01
n,gamma 1.4353e+02 5.7390e+02
n,alpha 4.1135e-04
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /5/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /5/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /5/.
MT= 22 (n,na) cross section
Calculated with CCONE code /5/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /5/.
MT= 28 (n,np) cross section
Calculated with CCONE code /5/.
MT= 30 (n,2n2a) cross section
Calculated with CCONE code /5/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /5/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /5/.
MT= 37 (n,4n) cross section
Calculated with CCONE code /5/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /5/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /5/.
MT=102 Capture cross section
Calculated with CCONE code /5/.
MT=103 (n,p) cross section
Calculated with CCONE code /5/.
MT=104 (n,d) cross section
Calculated with CCONE code /5/.
MT=105 (n,t) cross section
Calculated with CCONE code /5/.
MT=106 (n,He3) cross section
Calculated with CCONE code /5/.
MT=107 (n,a) cross section
Calculated with CCONE code /5/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /5/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /5/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /5/.
MT= 22 (n,na) reaction
Calculated with CCONE code /5/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /5/.
MT= 28 (n,np) reaction
Calculated with CCONE code /5/.
MT= 30 (n,2n2a) reaction
Calculated with CCONE code /5/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /5/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /5/.
MT= 37 (n,4n) reaction
Calculated with CCONE code /5/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /5/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /5/.
MT=102 Capture reaction
Calculated with CCONE code /5/.
*****************************************************************
Nuclear Model Calculation with CCONE code /5/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,8 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./6/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./7/
deuteron omp: Lohr,J.M. and Haeberli,W./8/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
alpha omp: McFadden,L. and Satchler,G.R./10/
(+) omp parameters were modified.
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/14/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/15/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/16/,/17/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Nd-147
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 5/2 - *
1 0.04993 7/2 -
2 0.12792 5/2 -
3 0.19029 9/2 -
4 0.21460 1/2 -
5 0.31467 3/2 -
6 0.46362 3/2 -
7 0.51671 5/2 -
8 0.58131 7/2 - *
9 0.60452 1/2 -
10 0.63149 3/2 -
11 0.65600 1/2 +
12 0.74900 1/2 -
13 0.76918 3/2 +
14 0.79256 3/2 -
15 0.80900 5/2 +
16 0.85900 3/2 -
17 0.90400 3/2 -
18 0.93400 13/2 +
19 0.94206 5/2 +
20 0.95726 3/2 -
21 0.98300 7/2 -
22 1.02900 3/2 -
23 1.04148 1/2 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010
Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470
Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542
Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189
Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190
Pr-147 17.0632 0.9897 3.0053 0.5856 -1.1357 5.6888
Pr-146 17.5893 0.0000 2.4188 0.5462 -1.6453 4.0472
Pr-145 16.8637 0.9965 1.7883 0.6002 -0.8883 5.5766
Pr-144 15.5000 0.0000 0.9153 0.6715 -1.9662 5.0412
Pr-143 16.6639 1.0035 0.4682 0.6161 -0.5920 5.4208
Ce-146 17.6964 1.9863 2.1733 0.5745 0.0448 6.5077
Ce-145 18.2180 0.9965 1.7406 0.5686 -0.8969 5.4793
Ce-144 17.4894 2.0000 1.0129 0.5822 0.3675 6.2813
Ce-143 19.6000 1.0035 0.4100 0.4774 0.1189 3.9645
Ce-142 18.9500 2.0140 -0.3155 0.5558 0.6875 5.9346
Ce-141 17.9000 1.0106 -1.0773 0.4985 0.5829 3.4550
Ce-140 17.0742 2.0284 -1.9470 0.5674 1.4861 4.9920
--------------------------------------------------------
Table 3. Gamma-ray strength function for Nd-148
--------------------------------------------------------
K0 = 1.800 E0 = 4.500 (MeV)
* E1: ER = 12.76 (MeV) EG = 3.97 (MeV) SIG = 107.00 (mb)
ER = 15.48 (MeV) EG = 5.30 (MeV) SIG = 220.00 (mb)
* M1: ER = 7.75 (MeV) EG = 4.00 (MeV) SIG = 1.39 (mb)
* E2: ER = 11.91 (MeV) EG = 4.33 (MeV) SIG = 3.34 (mb)
--------------------------------------------------------
References
1) Mughabghab,S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) Suyama,K. and Mochizuki,H.: J. Nucl Sci. Technol., 42, 661
(2005).
3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
4) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
7) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
10) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
11) Kalbach,C.: Phys. Rev. C33, 818 (1986).
12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).