93-Np-237
93-NP-237 KYUSHU U.+ EVAL-NOV87 Y.UENOHARA, Y.KANDA
DIST-JAN88 REV2-AUG93
----JENDL-3.2 MATERIAL 9346
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
HISTORY
79-03 NEW EVALUATION WAS MADE BY N.WACHI AND Y.KANDA (KYUSHU
UNIVERSITY), AND Y.KIKUCHI (JAERI).
87-11 (N,2N), (N,3N) AND FISSION CROSS SECTIONS WERE RE-EVALUATED
IN THE ENERGY RANGE ABOVE 100 KEV BY Y.UENOHARA AND Y.KANDA
(KYUSHU UNIVERSITY).
88-01 COMPILED BY T.NAKAGAWA (JAERI).
MODIFIED QUANTITIES : (1,452), (1,456), (3,2), (3,16)
(3,17) AND (3,18)
89-02 FP YIELDS WERE TAKEN FROM JNDC FP DECAY FILE VERSION-2.
89-03 (N,2N) REACTION CROSS SECTION WAS MODIFIED.
93-08 JENDL-3.2.
MODIFIED BY T.NAKAGAWA (NDC/JAERI)
***** MODIFIED PARTS FOR JENDL-3.2 ********************
(2,151)
(3,18) BELOW 350 KEV
(8,16)
(9,16)
***********************************************************
MF=1 GENERAL INFORMATION
MT=451 COMMENTS AND DICTIONARY
MT=452 NUMBER OF NEUTRONS PER FISSION
SUM OF MT=455 AND MT=456.
MT=455 DELAYED NEUTRON DATA
EXPERIMENTAL DATA OF BENEDETTI+/1/ AND SYSTEMATICS
BY TUTTLE/2/.
MT=456 NUMBER OF NEUTRONS PER FISSION
BASED ON EXPERIMENTAL DATA OF FREHAUT+/3/.
MF=2, MT=151 RESONANCE PARAMETERS
RESOLVED RESONANCES FOR SLBW FORMULA : 1.0E-5 - 130 EV
RES. ENERGY, GAM-N, GAM-G: WESTON AND TODD /4/.
GAM-F : PLATTARD+ /5/.
--> FOR JENDL-3.2, 5 TIMES LARGE VALUES ARE USED ON
THE BASIS OF NEW MEASUREMENT AT KYOTO UNIV./6/.
AVERAGE GAM-G = 40 MILLI-EV.
TWO NEGATIVE RESONANCE ARE GIVEN. PARAMETERS OF
0.22-EV RESONACE WERE ADJUSTED SO AS TO REDUCE THE
THERMAL CAPTURE CROSS SECTION/7/
UNRESOLVED RESONANCES : 130 EV - 30 KEV
PARAMETERS BY WESTON AND TODD/4/ WITH SLIGHT MODIFICATION
ADOPTED PARAMETERS :
S0=1.02E-4 , S1=1.888E-4 , D-OBS=0.45 EV
GAM-G=40 MILLI-EV.
GAM-F VALUES DETERMINED SO THAT SIG-F = 0.009 B.
CALCULATED 2200 M/S CROSS SECTIONS AND RESONANCE INTEGRALS:
2200 M/S VALUE RES.INT.
TOTAL : 192.11 B -
ELASTIC : 27.44 B -
FISSION : 0.0225 B 7.06 B
CAPTURE : 164.6 B 662 B
MF=3 NEUTRON CROSS SECTIONS
MT=1,4,51-64,91,102,251 TOTAL, INELASTIC, CAPTURE AND MU-BAR
CALCULATED WITH OPTICAL AND STATISTICAL MODEL CODE CASTHY
/8/.
THE SPHERICAL OPTICAL POTENTIAL PARAMETERS :
V = 43.55 , WS = 11.0 , VSO = 7.0 (MEV)
R = RS = 1.32 , RSO= 1.3 (FM)
A = B = 0.47 , ASO= 0.4 (FM).
IN THE STATISTICAL MODEL CALCULATION WITH CASTHY CODE,
COMPETING PROCESSES, FISSION, (N,2N) AND (N,3N), AND LEVEL
FLUCTUATION WERE CONSIDERED. THE LEVEL SCHEME WAS TAKEN
FROM COMPILATION BY ELLIS /9/.
NO ENERGY(MEV) SPIN-PARITY
G.S. 0.0 5/2+
1 0.03320 7/2+
2 0.05954 5/2-
3 0.07580 9/2+
4 0.10296 7/2-
5 0.13000 11/2+
6 0.15852 9/2-
7 0.2260 11/2-
8 0.26754 3/2-
9 0.281 1/2-
10 0.305 13/2-
11 0.327 7/2-
12 0.332 1/2+
13 0.357 5/2-
14 0.369 5/2+
CONTINUUM LEVELS ASSUMED ABOVE 0.370 MEV.
THE LEVEL DENSITY PARAMETERS WERE TAKEN FROM GILBERT AND
CAMERON /10/. THE GAMMA-RAY STRENGTH FUNCTION FOR THE
CAPTURE CROSS SECTION WAS DETERMINED SO THAT SIG-C = 0.742
B AT 200 KEV.
MT=2 ELASTIC SCATTERING
CALCULATED AS (TOTAL - SUM OF PARTIAL CROSS SECTIONS).
MT=16 (N,2N)
FOR JENDL-2, DATA WERE CALCULATED WITH THE EVAPORATION
MODEL OF SEGEV+/11/. THE DATA FOR JENDL-3 WERE EVALUATED
BY FITTING TO THE FOLLOWING EXPERIMENTAL DATA.
PERKIN+ /12/, LANDRUM+ /13/, LINDKE+ /14/, FORT+ /15/,
GROMOVA+ /16/ AND KORNILOV+ /17/.
THE DATA OF JENDL-2 WERE USED AS PRIOR VALUES, AND 50%
FRACTIONAL STANDARD DEVIATIONS WERE ASSIGNED TO THEM.
MT=17 (N,3N)
FOR JENDL-2, CALCULATED WITH THE EVAPORATION MODEL OF
SEGEV+ /11/. ABOVE 16.5 MEV, THE JENDL-2 DATA WERE
MODIFIED BY ADDING THE VALUES OF (SIG-2N OF JENDL-2)-
(SIG-2N OF JENDL-3). BELOW 16.5 MEV, THE SHAPE OF (N,3N)
CROSS SECTION OF JENDL-2 WAS NORMALIZED TO THE MODIFIED
VALUE AT 16.5 MEV.
MT=18 FISSION
EVALUATED FROM MEASURED DATA. ABOVE 100 KEV, SIMULTANEOUS
EVALUATION METHOD WAS USED BY TAKING ACCOUNT OF THE
FOLLOWING EXPERIMENTAL DATA.
KLEMA /18/, PROTOPOPOV+ /19/, SCHMITT+ /20/, GRUNDL
/21/, IYER+ /22/, JIACOLETTI+ /23/, KOBAYASHI+ /24/,
ARLT+ /25/, CANCE+ /26/, GARLEA+ /27/, KUPRIJANOV+ /28/,
WHITE+ /29,30/, STEIN+ /31/, BEHRENS+ /32/ AND MEADOWS
/33/.
FOR JENDL-3.2, CROSS SECTIONS BELOW 350 KEV WAS MODIFIOED
AS AS TO SMOOTHLY CONNECT TO THE DATA MESURED BY YAMANAKA+
/6/
MF=4 ANGULAR DISTRIBUTIONS OF SECONDARY NEUTRONS
MT=2,51-64,91 CALCULATED WITH THE OPTICAL MODEL.
MT=16,17,18 ISOTROPIC IN THE LABORATORY SYSTEM.
MF=5 ENERGY DISTRIBUTIONS OF SECONDARY NEUTRONS
MT=16,17,91 EVAPORATION SPECTRUM.
MT=18 ESTIMATED FROM Z**2/A SYSTEMATICS BY SMITH+/34/
BY ASSUMING E(CF-252) = 2.13 MEV.
MF=8 RADIOACTIVE DECAY
MT=16
DECAY DATA OF NP-236 ARE GIVEN.
MF=9 MULTIPLICITIES FOR PRODUCTION OF RADIOACTIVE NUCLIDES
MT=16
META-STABLE STATE (T-1/2 =22.5 H) PRODUCTIOIN WAS ASSUMED TO
BE 75 %.
REFERENCES
1) G. BENEDETTI ET AL.: NUCL. SCI. ENG., 80, 379 (1982).
2) R.J. TUTTLE: INDC(NDS)-107/G+SPECIAL, P.29 (1979).
3) J. FREHAUT ET AL.: CEA-N-2196 (1981).
4) L.W. WESTON AND J.H. TODD: NUCL. SCI. ENG., 79, 184 (1981).
5) S. PLATTARD ET AL.: NUCL. SCI. ENG., 61, 477 (1976).
6) A. YAMANAKA, ET AL: J. NUCL. SCI. TECHNOL., 30, 863 (1993).
7) K. KOBAYASHI, ET AL: TO BE PUBLISHED IN JAERI-M REPORT(1994).
8) S. IGARASI AND T. FUKAHORI: JAERI 1321 (1991).
9) Y.A. ELLIS: NUCL. DATA SHEETS, B6, 539 (1971).
10) A. GILBERT AND A.G.W. CAMERON: CAN. J. PHYS., 43, 1446 (1965)
11) M. SEGEV ET AL.: ANNALS OF NUCL. ENERGY, 5, 239 (1978).
12) J. PERKIN, ET AL.: NUCL. ENERG., 14, 69 (1961).
13) J. LANDRUM, ET AL.: PHYS. REV., C8, 1938 (1969).
14) K.E.A.LINDKE: PHYS. REV., C12, 1507 (1975).
15) E. FORT, ET AL.: 82ANTWERP, 673 (1982).
16) E.A. GROMOVA, ET AL.: AT. ENERG., 54, 108 (1983).
17) N.V. KORNILOV, ET AL.: AT. ENERG., 58, 117 (1983).
18) E.D. KLEMA: PHYS. REV., 72, 88, (1947).
19) A.N. PROTOPOPOV, ET AL.: AT. ENERG., 4, 190 (1958).
20) H.W. SCHMITT, ET AL.: PHYS. REV., 116, 1575 (1959).
21) J.A. GRUNDL: NUCL. SCI. ENG., 30, 39 (1967).
22) R.H. IYER, ET AL.: 69ROORKEE, 2, 289 (1969).
23) R.J. JIACOLETTI, ET AL.: NUCL. SCI. ENG., 48, 412 (1972).
24) K. KOBAYASHI, ET AL.: PRIVATE COMMUNICATION (1973).
25) R. ARLT, ET AL.: KERNENERGIE 24, 48 (1981).
26) M. CANCE, ET AL.: 82ANTWERP, 51 (1982).
27) I. GARLEA, ET AL.: INDC(ROM)-15 (1983).
28) V.M. KUPRIJANOV, ET AL.: AT. ENERG, 45, 440 (1978).
29) P.H. WHITE, ET AL.: 65SALZBURG, 1, 219 (1965).
30) P.H. WHITE, ET AL.: J. NUCL. ENERG., 21, 671 (1967).
31) W.E. STEIN, ET AL.: 68WASHIGTON, 1, 627 (1968).
32) J.W. BEHRENS, ET AL.: NUCL. SCI. ENG., 80, 393 (1982).
33) J.W. MEADOWS: NUCL. SCI. ENG., 85, 271 (1983).
34) A.B. SMITH ET AL.: ANL/NDM-50 (1979).