76-Os-184
76-Os-184 JAEA EVAL-Jan10 N.Iwamoto
DIST-MAY10 20100121
----JENDL-4.0 MATERIAL 7625
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
10-01 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
No resolved resonance parameters
Unresolved resonance region : 10.0 eV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /1/ so as to reproduce the total and capture
cross sections calculated with optical model code CCOM /2/
and CCONE /3/. The unresolved parameters should be used
only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 3.0116e+03
Elastic 1.0028e+01
n,gamma 3.0012e+03 1.3679e+03
n,alpha 5.0020e-03
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /3/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /3/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /3/.
MT= 22 (n,na) cross section
Calculated with CCONE code /3/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /3/.
MT= 28 (n,np) cross section
Calculated with CCONE code /3/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /3/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /3/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /3/.
MT=102 Capture cross section
Calculated with CCONE code /3/.
MT=103 (n,p) cross section
Calculated with CCONE code /3/.
MT=104 (n,d) cross section
Calculated with CCONE code /3/.
MT=105 (n,t) cross section
Calculated with CCONE code /3/.
MT=106 (n,He3) cross section
Calculated with CCONE code /3/.
MT=107 (n,a) cross section
Calculated with CCONE code /3/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /3/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /3/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /3/.
MT= 22 (n,na) reaction
Calculated with CCONE code /3/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /3/.
MT= 28 (n,np) reaction
Calculated with CCONE code /3/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /3/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /3/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /3/.
MT=102 Capture reaction
Calculated with CCONE code /3/.
*****************************************************************
Nuclear Model Calculation with CCONE code /3/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,3,9 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./4/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./5/
deuteron omp: Lohr,J.M. and Haeberli,W./6/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
alpha omp: Huizenga,J.R. and Igo,G./8/
(+) omp parameters were modified.
2) Two-component exciton model/9/
* Global parametrization of Koning-Duijvestijn/10/
was used.
* Gamma emission channel/11/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/12/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/13/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/14/,/15/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Os-184
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.11980 2 + *
2 0.38377 4 + *
3 0.77414 6 + *
4 0.94278 2 +
5 1.04200 0 +
6 1.08102 3 +
7 1.20800 3 -
8 1.22504 4 +
9 1.27486 8 + *
10 1.40670 4 -
11 1.42830 5 +
12 1.44572 2 +
13 1.50063 3 +
14 1.54394 3 -
15 1.61318 6 +
16 1.62072 4 -
17 1.63155 0 +
18 1.63770 0 +
19 1.69798 2 +
20 1.70757 0 +
21 1.71817 5 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Os-185 22.1963 0.8823 1.2316 0.5204 -1.1821 5.5154
Os-184 21.5751 1.7693 1.2558 0.4918 0.2058 5.6759
Os-183 22.0008 0.8871 1.5238 0.5028 -0.9787 5.1834
Os-182 21.3733 1.7790 1.7013 0.4819 0.2627 5.5558
Re-184 21.4138 0.0000 0.9812 0.4428 -0.9368 2.9335
Re-183 20.6085 0.8871 1.1284 0.5140 -0.7059 4.9237
Re-182 21.2150 0.0000 1.4245 0.3791 -0.4414 2.0000
Re-181 20.4137 0.8920 1.7484 0.4998 -0.6498 4.7622
W-183 21.5000 0.8871 1.1150 0.5015 -0.7444 4.9247
W-182 21.6000 1.7790 1.2320 0.4968 0.1520 5.7824
W-181 21.7000 0.8920 1.4211 0.5039 -0.8970 5.1048
W-180 21.8000 1.7889 1.6876 0.4911 0.0704 5.8453
W-179 21.6088 0.8969 1.8693 0.4999 -0.9425 5.1166
W-178 20.9690 1.7989 2.0630 0.4917 0.1523 5.7405
--------------------------------------------------------
Table 3. Gamma-ray strength function for Os-185
--------------------------------------------------------
K0 = 1.700 E0 = 4.500 (MeV)
* E1: ER = 12.23 (MeV) EG = 3.10 (MeV) SIG = 167.95 (mb)
ER = 15.27 (MeV) EG = 4.74 (MeV) SIG = 335.90 (mb)
* M1: ER = 7.20 (MeV) EG = 4.00 (MeV) SIG = 1.27 (mb)
* E2: ER = 11.06 (MeV) EG = 3.89 (MeV) SIG = 4.78 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
2) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003)
3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
9) Kalbach,C.: Phys. Rev. C33, 818 (1986).
10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).