76-Os-188
76-Os-188 JAEA EVAL-Jan10 N.Iwamoto
DIST-MAY10 20100121
----JENDL-4.0 MATERIAL 7637
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
10-01 The resolved resonance parameters were evaluated by
N.Iwamoto.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region: below 5.0 keV
Resolved resonance parameters were taken from Mughabghab
/1/. The negative resonance was placed so as to
reproduce the cross sections at thermal energy recommended
by Mughabghab /1/.
Unresolved resonance region : 5.0 keV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.3230e+01
Elastic 7.7271e+00
n,gamma 5.5029e+00 1.5400e+02
n,alpha 1.2351e-05
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,5,17 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: Huizenga,J.R. and Igo,G./9/
(+) omp parameters were modified.
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Os-188
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.15502 2 + *
2 0.47794 4 + *
3 0.63301 2 +
4 0.78998 3 +
5 0.94031 6 + *
6 0.96565 4 +
7 1.08636 0 +
8 1.18086 5 +
9 1.27909 4 +
10 1.30482 2 +
11 1.41378 3 -
12 1.42484 6 +
13 1.44350 1 -
14 1.45753 2 +
15 1.46251 2 -
16 1.47804 0 +
17 1.51470 8 + *
18 1.51610 5 +
19 1.56670 4 +
20 1.57700 2 +
21 1.62048 2 +
22 1.66866 5 -
23 1.68529 3 +
24 1.68550 7 +
25 1.70427 0 +
26 1.72942 2 +
27 1.74650 2 -
28 1.76540 0 +
29 1.77100 7 -
30 1.80761 2 +
31 1.82494 0 +
32 1.84292 0 +
33 1.85500 0 +
34 1.87790 0 +
35 1.89300 0 +
36 1.93690 0 +
37 1.94102 0 +
38 1.94860 0 +
39 1.95709 0 +
40 1.96498 2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Os-189 23.6000 0.8729 0.7207 0.5092 -1.1969 5.5241
Os-188 23.1000 1.7504 0.7049 0.4799 0.1757 5.6719
Os-187 22.9000 0.8775 0.9894 0.5173 -1.2331 5.5812
Os-186 21.7766 1.7598 1.0161 0.5003 0.1144 5.8222
Re-188 22.0000 0.0000 0.8388 0.4802 -1.4013 3.6931
Re-187 20.9976 0.8775 1.0287 0.5196 -0.8390 5.1039
Re-186 21.4000 0.0000 0.9320 0.4744 -1.2480 3.4655
Re-185 20.8032 0.8823 1.1055 0.4981 -0.5577 4.6703
W-187 23.5700 0.8775 1.1868 0.4614 -0.6754 4.6629
W-186 23.1400 1.7598 1.2307 0.4935 -0.1424 6.0929
W-185 22.7200 0.8823 1.2247 0.4842 -0.8101 4.9225
W-184 22.1100 1.7693 1.2350 0.5106 -0.1439 6.1796
W-183 21.5000 0.8871 1.1150 0.5015 -0.7444 4.9247
W-182 21.6000 1.7790 1.2320 0.4968 0.1520 5.7824
--------------------------------------------------------
Table 3. Gamma-ray strength function for Os-189
--------------------------------------------------------
K0 = 1.700 E0 = 4.500 (MeV)
* E1: ER = 12.68 (MeV) EG = 2.71 (MeV) SIG = 268.00 (mb)
ER = 14.68 (MeV) EG = 3.62 (MeV) SIG = 395.00 (mb)
ER = 5.50 (MeV) EG = 1.10 (MeV) SIG = 2.50 (mb)
ER = 1.70 (MeV) EG = 0.50 (MeV) SIG = 0.04 (mb)
* M1: ER = 7.14 (MeV) EG = 4.00 (MeV) SIG = 1.22 (mb)
* E2: ER = 10.98 (MeV) EG = 3.84 (MeV) SIG = 4.74 (mb)
--------------------------------------------------------
References
1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).