82-Pb-204
82-Pb-204 JAEA EVAL-MAR10 O.Iwamoto, N.Iwamoto
DIST-SEP14 20150816
----JENDL-4.0u1 MATERIAL 8225
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
10-03 Resonace parameters were evaluated by N. Iwamoto.
Cross sections and spectra were evaluated and compiled by
O. Iwamoto.
13-02 JENDL-4.0u1
Covariance data (MF33/1,2,4,16,17,51-91,102,MF34/2) were
added.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved resonance parameters for Reich-Moore formula.
Resonance ranges: 1.0e-5 eV to 75 keV
Parameters were evaluated from the data of Mughabghab /1/
and Domingo-Pardo et al. /2/.
Effective scattering radius of 9.5 fm was selected.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barns) (barns)
----------------------------------------------------------
Total 1.29371E+01
Elastic 1.22339E+01
n,gamma 7.03163E-01 2.38541E+00
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Based on experimental data/3/ and CCONE calculation.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic cross sections from total
cross sections.
MT= 4,51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
The (n,a) cross section below 75 keV was calculated from
resonance parameters, by assuming a mean alpha width of
7.0e-8 eV for s-wave resonances and 1.3e-7 eV for p- and
d-wave resonances.
The cross section was averaged in suitable energy intervals.
Above 75 keV, the cross section was connected smoothly to the
CCONE calculation.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Neutron spectra calculated with CCONE code/4/.
MT= 17 (n,3n) reaction
Neutron spectra calculated with CCONE code/4/.
MT= 22 (n,na) reaction
Neutron spectra calculated with CCONE code/4/.
MT= 28 (n,np) reaction
Neutron spectra calculated with CCONE code/4/.
MT= 51-91 (n,n') reaction
Neutron angular distributions and spectra calculated with
CCONE code/4/.
MT= 102 Capture cross section
Gamma-ray spectra calculated with CCONE code/4/.
MF=33 Covariances of neutron cross sections
Covariance data were basically evaluated with CCONE code/4/ and
KALMAN code/5/. Evaluated data with the other methods are
described bellow.
MT=1 Total cross section
1.0e-5 eV to 75 keV(RRR): given by a sum of the covariance data
of the elastic scattering and the neutron capture cross
sections.
75 keV to 2 MeV: obtained based on the average cross section
of the experimental data/3/.
2 MeV to 20 MeV: obtained by the CCONE-KALMAN.
MT=2 Elastic scattering cross sections
1.0e-5 eV to 75 keV(RRR): obtained by the kernel
approximation/6/.
75 keV to 20 MeV: obtained by the CCONE-KALMAN.
MT=102 Capture cross section
1.0e-5 eV to 75 keV(RRR): obtained by the kernel
approximation/6/.
75 keV to 20 MeV: obtained by the CCONE-KALMAN.
MF=34 Covariances for Angular Distributions
MT=2 Elastic scattering
Obtained by the CCONE-KALMAN.
*****************************************************************
* Nuclear Model Calculation with CCONE code /4/ *
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
neutron OMP: Koning et al./7/
proton OMP: Koning and Delaroche /8/
alpha OMP: Avrigeanu et al./9/ with modification
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Moldauer width fluctuation correction/13/ was included.
* Neutron, proton, alpha and gamma decay channels were
included.
* Transmission coefficients of neutrons, proton and alpha
were taken from optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction and collective
enhancement factor. Parameters are shown in Table 2.
* Gamma-ray strength function of Kopecky et al/14/,/15/
was used. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pb-204
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 +
1 0.89917 2 +
2 1.27400 4 +
3 1.35117 2 +
4 1.56327 4 +
5 1.58250 0 +
6 1.58276 2 +
7 1.60476 3 +
8 1.66528 2 +
9 1.68120 1 +
10 1.71220 3 +
11 1.72997 0 +
12 1.76108 2 +
13 1.81745 4 +
14 1.87211 1 +
15 1.93329 1 +
-------------------
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pb-205 26.1904 0.8381 -7.5629 0.6715 -0.4353 8.0994
Pb-204 26.0839 1.6803 -6.7012 0.6812 -0.2552 9.6416
Pb-203 25.9774 0.8422 -5.8686 0.5356 0.2693 4.6262
Pb-202 23.5189 1.6886 -5.1155 0.6087 0.5389 6.7723
Tl-204 23.7127 0.0000 -7.3974 0.7420 -1.6150 8.6194
Tl-203 23.6158 0.8422 -6.3748 0.6939 -0.7207 7.9782
Tl-202 23.5189 0.0000 -5.8533 0.5817 -0.5512 4.0888
Hg-203 23.6158 0.8422 -6.5295 0.7165 -0.9421 8.7294
Hg-202 23.5189 1.6886 -5.9276 0.7363 -0.7512 10.4860
Hg-201 23.4219 0.8464 -5.2630 0.6922 -1.2829 8.2740
Hg-200 23.3248 1.6971 -4.7209 0.6692 -0.3684 8.5593
Hg-199 23.2277 0.8507 -4.0893 0.6457 -1.1776 7.2191
Hg-198 23.1305 1.7056 -3.4174 0.5931 0.0911 6.9096
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pb-205
--------------------------------------------------------
* E1: ER = 13.77 (MeV) EG = 3.89 (MeV) SIG = 579.28 (mb)
* M1: ER = 6.95 (MeV) EG = 4.00 (MeV) SIG = 0.89 (mb)
* E2: ER = 10.68 (MeV) EG = 3.65 (MeV) SIG = 5.35 (mb)
--------------------------------------------------------
References
1) S.F.Mughabghab: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
2) C.Domingo-Pardo et al.: Phys. Rev. C75, 015806 (2007).
3) R.F.Carlton et al.: Phys Rev. C67, 024601 (2003).
4) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007).
5) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in
Japanese.
6) P.Pblozinsky et al.: NL-91287-2010 (2010).
7) A.J.Koning et al.: Nucl. Sci. Eng., 156, 357 (2007).
8) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).
9) V.Avrigeanu,P.E.Hodgson, and M.Avrigeanu, Report OUNP-94-02
(1994), Phys. Rev. C49,2136 (1994).
10) C.Kalbach: Phys. Rev. C33, 818 (1986).
11) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004).
12) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985).
13) P.A.Moldauer: Nucl. Phys. A344, 185 (1980).
14) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990).
15) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).