82-Pb-206
82-Pb-206 JAEA EVAL-MAR10 O.Iwamoto, N.Iwamoto
DIST-SEP14 20150816
----JENDL-4.0u1 MATERIAL 8231
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
10-03 Resonace parameters were evaluated by N. Iwamoto.
Cross sections and spectra were evaluated and compiled by
O. Iwamoto.
13-02 JENDL-4.0u1
Covariance data (MF33/1,2,4,16,17,51-91,102,MF34/2) were
added.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved resonance parameters for Reich-Moore formula.
Resonance ranges: 1.0e-5 eV to 820 keV
Parameters were evaluated from the data of Mughabghab /1/,
Domingo-Pardo et al. /2/ and Borella et al. /3/.
Effective scattering radius of 9.7 fm was selected.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barns) (barns)
----------------------------------------------------------
Total 1.08757E+01
Elastic 1.08491E+01
n,gamma 2.65634E-02 1.14757E-01
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Based on experimental data/4,5/ and CCONE calculation.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic cross sections from total
cross sections.
MT= 4,51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
The (n,a) cross section below 820 keV was calculated from
resonance parameters, by assuming a mean alpha width of
9.0e-8 eV for s-wave resonances and 1.5e-7 eV for p- and
d-wave resonances.
The cross section was averaged in suitable energy intervals.
Above 820 keV, the cross section was connected smoothly to the
CCONE calculation.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Neutron spectra calculated with CCONE code/6/.
MT= 17 (n,3n) reaction
Neutron spectra calculated with CCONE code/6/.
MT= 22 (n,na) reaction
Neutron spectra calculated with CCONE code/6/.
MT= 28 (n,np) reaction
Neutron spectra calculated with CCONE code/6/.
MT= 51-91 (n,n') reaction
Neutron angular distributions and spectra calculated with
CCONE code/6/.
MT= 102 Capture cross section
Gamma-ray spectra calculated with CCONE code/6/.
MF=33 Covariances of neutron cross sections
Covariance data were basically evaluated with CCONE code/4/ and
KALMAN code/7/. Evaluated data with the other methods are
described bellow.
MT=1 Total cross section
1.0e-5 eV to 820 keV(RRR): given by a sum of the covariance data
of the elastic scattering and the neutron capture cross
sections.
820 keV to 5.5 MeV: obtained based on the average cross section
of the experimental data/4/,/5/.
5.5 MeV to 20 MeV: obtained by the CCONE-KALMAN.
MT=2 Elastic scattering cross sections
1.0e-5 eV to 820 keV(RRR): obtained by the kernel
approximation/8/.
820 keV to 20 MeV: obtained by the CCONE-KALMAN.
MT=102 Capture cross section
1.0e-5 eV to 820 keV(RRR): obtained by the kernel
approximation/8/.
820 keV to 20 MeV: obtained by the CCONE-KALMAN.
MF=34 Covariances for Angular Distributions
MT=2 Elastic scattering
Obtained by the CCONE-KALMAN.
*****************************************************************
* Nuclear Model Calculation with CCONE code /6/ *
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
neutron OMP: Koning et al./9/
proton OMP: Koning and Delaroche /10/
alpha OMP: Avrigeanu et al./11/ with modification
2) Two-component exciton model/12/
* Global parametrization of Koning-Duijvestijn/13/
was used.
* Gamma emission channel/14/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Moldauer width fluctuation correction/15/ was included.
* Neutron, proton, alpha and gamma decay channels were
included.
* Transmission coefficients of neutrons, proton and alpha
were taken from optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction and collective
enhancement factor. Parameters are shown in Table 2.
* Gamma-ray strength function of Kopecky et al/16/,/17/
was used. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pb-206
---------------------------------
No. Ex(MeV) J PI, DWBA: L beta
---------------------------------
0 0.00000 0 +
1 0.80310 2 + 2 0.03
2 1.16600 0 +
3 1.34054 3 +
4 1.46680 2 + 2 0.01
5 1.68404 4 + 4 0.03
6 1.70350 1 +
7 1.78420 2 +
8 1.99771 4 + 4 0.02
9 2.14790 2 + 2 0.01
10 2.19670 3 -
11 2.20021 7 - 7 0.02
12 2.23570 4 +
13 2.31500 0 +
14 2.38419 6 -
15 2.39139 1 +
16 2.42310 2 + 2 0.01
---------------------------------
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pb-207 25.6831 0.8341 -9.5535 0.7157 0.5055 8.8352
Pb-206 26.2968 1.6722 -8.3925 0.7059 0.4426 10.1593
Pb-205 26.1904 0.8381 -7.5629 0.6715 -0.4353 8.0994
Pb-204 26.0839 1.6803 -6.7012 0.6812 -0.2552 9.6416
Tl-206 23.9062 0.0000 -9.0786 0.7703 -0.8614 9.5127
Tl-205 23.8095 0.8381 -7.9177 0.7491 -0.5502 9.6384
Tl-204 23.7127 0.0000 -7.3974 0.7420 -1.6150 8.6194
Hg-205 23.8095 0.8381 -7.7955 0.6870 0.1648 7.1525
Hg-204 23.7127 1.6803 -7.2319 0.7544 -0.2408 10.8925
Hg-203 23.6158 0.8422 -6.5295 0.7165 -0.9421 8.7294
Hg-202 23.5189 1.6886 -5.9276 0.7363 -0.7512 10.4860
Hg-201 23.4219 0.8464 -5.2630 0.6922 -1.2829 8.2740
Hg-200 23.3248 1.6971 -4.7209 0.6692 -0.3684 8.5593
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pb-207
--------------------------------------------------------
* E1: ER = 13.74 (MeV) EG = 3.88 (MeV) SIG = 585.51 (mb)
* M1: ER = 6.93 (MeV) EG = 4.00 (MeV) SIG = 0.90 (mb)
* E2: ER = 10.65 (MeV) EG = 3.63 (MeV) SIG = 5.33 (mb)
--------------------------------------------------------
References
1) S.F.Mughabghab: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
2) C.Domingo-Pardo et al.: Phys. Rev., C76, 045805 (2007).
3) A.Borella et al.: Phys. Rev., C76, 014605 (2007).
4) D.J.Horen et al.: Phys Rev. C20, 478 (1979).
5) D.G.Foster Jr, D.W.Glasgow: Phys. Rev. C3, 576 (1971).
6) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007).
7) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in
Japanese.
8) P.Pblozinsky et al.: NL-91287-2010 (2010).
9) A.J.Koning et al.: Nucl. Sci. Eng., 156, 357 (2007).
10) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).
11) V.Avrigeanu,P.E.Hodgson, and M.Avrigeanu, Report OUNP-94-02
(1994), Phys. Rev. C49,2136 (1994).
12) C.Kalbach: Phys. Rev. C33, 818 (1986).
13) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004).
14) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985).
15) P.A.Moldauer: Nucl. Phys. A344, 185 (1980).
16) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990).
17) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).