82-Pb-208
82-Pb-208 JAEA EVAL-MAR10 O.Iwamoto, N.Iwamoto
DIST-SEP14 20150816
----JENDL-4.0u1 MATERIAL 8237
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
10-03 Resonace parameters were evaluated by N. Iwamoto.
Cross sections and spectra were evaluated and compiled by
O. Iwamoto.
13-02 JENDL-4.0u1
Covariance data (MF33/1,2,4,16,17,51-91,102,MF34/2) were
added.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved resonance parameters for Reich-Moore formula.
Resonance ranges: 1.0e-5 eV to 1 MeV
Parameters were evaluated from the data of Mughabghab /1/.
Effective scattering radius of 9.75 fm was selected.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barns) (barns)
----------------------------------------------------------
Total 1.14581E+01
Elastic 1.14579E+01
n,gamma 2.30374E-04 4.01052E-03
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Based on experimental data/2,3/ and CCONE calculation.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic cross sections from total
cross sections.
MT= 4,51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
The (n,a) cross section below 1 MeV was calculated from
resonance parameters, by assuming a mean alpha width of
1.0e-6 eV, except for negative resonance with 1.23e-2 eV, so
as to reproduce the cross section ratio at thermal energy /5/.
The cross section was averaged in suitable energy intervals.
Above 1 MeV, the cross section was connected smoothly to the
CCONE calculation.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Neutron spectra calculated with CCONE code/4/.
MT= 17 (n,3n) reaction
Neutron spectra calculated with CCONE code/4/.
MT= 22 (n,na) reaction
Neutron spectra calculated with CCONE code/4/.
MT= 28 (n,np) reaction
Neutron spectra calculated with CCONE code/4/.
MT= 51-91 (n,n') reaction
Neutron angular distributions and spectra calculated with
CCONE code/4/.
MT= 102 Capture cross section
Gamma-ray spectra calculated with CCONE code/4/.
MF=33 Covariances of neutron cross sections
Covariance data were basically evaluated with CCONE code/4/ and
KALMAN code/6/. Evaluated data with the other methods are
described bellow.
MT=1 Total cross section
1.0e-5 eV to 1 MeV(RRR): given by a sum of the covariance data
of the elastic scattering and the neutron capture cross
sections.
1 MeV to 7 MeV: obtained based on the average cross section
of the experimental data/2/,/3/.
6 MeV to 20 MeV: obtained by the CCONE-KALMAN.
MT=2 Elastic scattering cross sections
1.0e-5 eV to 1 MeV(RRR): obtained by the kernel
approximation/7/.
1 MeV to 20 MeV: obtained by the CCONE-KALMAN.
MT=102 Capture cross section
1.0e-5 eV to 1 MeV(RRR): obtained by the kernel
approximation/7/.
1 MeV to 20 MeV: obtained by the CCONE-KALMAN.
MF=34 Covariances for Angular Distributions
MT=2 Elastic scattering
Obtained by the CCONE-KALMAN.
*****************************************************************
* Nuclear Model Calculation with CCONE code /4/ *
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
neutron OMP: Koning et al./8/
proton OMP: Koning and Delaroche /9/
alpha OMP: Avrigeanu et al./10/ with modification
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Moldauer width fluctuation correction/14/ was included.
* Neutron, proton, alpha and gamma decay channels were
included.
* Transmission coefficients of neutrons, proton and alpha
were taken from optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction and collective
enhancement factor. Parameters are shown in Table 2.
* Gamma-ray strength function of Kopecky et al/15/,/16/
was used. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pb-208
---------------------------------
No. Ex(MeV) J PI, DWBA: L beta
---------------------------------
0 0.00000 0 +
1 2.61455 3 - 3 0.09
2 3.19774 5 - 5 0.03
3 3.47511 4 -
4 3.70844 5 - 5 0.02
5 3.91980 6 -
6 3.94644 4 -
7 3.96096 5 - 5 0.01
8 3.99570 5 -
9 4.03700 7 - 7 0.02
10 4.04500 6 -
11 4.05050 3 - 3 0.02
12 4.08540 2 +
13 4.10600 3 - 3 0.03
14 4.12531 4 -
15 4.14100 2 +
16 4.15900 2 +
17 4.18041 5 -
18 4.20540 6 -
19 4.22950 2 -
20 4.23000 4 -
21 4.25350 3 - 3 0.07
22 4.26240 5 -
23 4.29617 5 -
24 4.31800 2 +
25 4.32320 4 +
---------------------------------
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pb-209 24.1961 0.8301 -8.6072 0.6523 0.8730 5.6376
Pb-208 26.5095 1.6641 -9.9611 0.6945 1.6735 8.9801
Pb-207 25.6831 0.8341 -9.5535 0.7157 0.5055 8.8352
Pb-206 26.2968 1.6722 -8.3925 0.7059 0.4426 10.1593
Tl-208 24.0995 0.0000 -7.9260 0.7127 -0.9908 7.4338
Tl-207 24.0029 0.8341 -9.1989 0.6784 1.0665 6.0451
Tl-206 23.9062 0.0000 -9.0786 0.7703 -0.8614 9.5127
Hg-207 24.0029 0.8341 -6.5458 0.4118 1.3479 1.8341
Hg-206 23.9062 1.6722 -8.0262 0.6306 1.6426 6.0277
Hg-205 23.8095 0.8381 -7.7955 0.6870 0.1648 7.1525
Hg-204 23.7127 1.6803 -7.2319 0.7544 -0.2408 10.8925
Hg-203 23.6158 0.8422 -6.5295 0.7165 -0.9421 8.7294
Hg-202 23.5189 1.6886 -5.9276 0.7363 -0.7512 10.4860
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pb-209
--------------------------------------------------------
* E1: ER = 12.00 (MeV) EG = 4.00 (MeV) SIG = 500.00 (mb)
* M1: ER = 6.91 (MeV) EG = 4.00 (MeV) SIG = 2.29 (mb)
* E2: ER = 10.62 (MeV) EG = 3.60 (MeV) SIG = 5.32 (mb)
--------------------------------------------------------
References
1) S.F.Mughabghab: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
2) R.F.Carlton et al.: Bull. Amer. Phys. Soc., 36, 1349(J10-10)
(1991)
3) J.A.Harvey: private communication in EXFOR(13732002).
4) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007).
5) J.Alam and M.I.Sehgal: Nucl. Phys. A205, 614 (1973)
6) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in
Japanese.
7) P.Pblozinsky et al.: NL-91287-2010 (2010).
8) A.J.Koning et al.: Nucl. Sci. Eng., 156, 357 (2007).
9) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).
10) V.Avrigeanu,P.E.Hodgson, and M.Avrigeanu, Report OUNP-94-02
(1994), Phys. Rev. C49,2136 (1994).
11) C.Kalbach: Phys. Rev. C33, 818 (1986).
12) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004).
13) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985).
14) P.A.Moldauer: Nucl. Phys. A344, 185 (1980).
15) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990).
16) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).