46-Pd-102
46-Pd-102 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 4625
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
Mf= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 0.88 keV
In JENDL-3.3, resonance parameters were based on Mughabghab
et al./1/
In JENDL-4, two resonances at 420.5 eV and 800.0 eV were
taken from the work of Smith et al./2/ Moreover, the
parameters for a negative resonance were adjusted so as to
reproduce the thermal capture cross section measured by
Duncan et al./3/
Unresolved resonance region : 880 eV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 6.6377e+00
Elastic 4.8172e+00
n,gamma 1.8205e+00 1.5056e+01
n,alpha 7.5191e-06
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 44 (n,n2p) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MT=108 (n,2a) cross section
Calculated with CCONE code /6/.
MT=111 (n,2p) cross section
Calculated with CCONE code /6/.
MT=112 (n,pa) cross section
Calculated with CCONE code /6/.
MT=115 (n,pd) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 44 (n,n2p) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,9,15 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./8/
deuteron omp: Lohr,J.M. and Haeberli,W./9/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
alpha omp: Huizenga,J.R. and Igo,G./11/
(+) omp parameters were modified.
2) Two-component exciton model/12/
* Global parametrization of Koning-Duijvestijn/13/
was used.
* Gamma emission channel/14/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/15/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/16/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/17/,/18/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pd-102
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.55643 2 + *
2 1.27587 4 + *
3 1.53447 2 +
4 1.59313 0 +
5 1.65810 0 +
6 1.71500 4 -
7 1.91900 1 +
8 1.94445 2 +
9 2.11135 6 + *
10 2.11165 3 +
11 2.13802 4 +
12 2.24870 2 +
13 2.29453 4 -
14 2.30127 4 +
15 2.34294 3 - *
16 2.39110 2 +
17 2.43150 3 +
18 2.47433 5 -
19 2.48020 1 +
20 2.48990 0 +
21 2.53300 4 +
22 2.54620 2 -
23 2.55350 3 -
24 2.57430 1 +
25 2.58290 2 +
26 2.60650 2 +
27 2.61073 2 +
28 2.65130 4 +
29 2.66070 0 -
30 2.67500 3 +
31 2.69590 2 -
32 2.71630 2 +
33 2.73700 5 +
34 2.76900 0 +
35 2.79890 4 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pd-103 13.8438 1.1824 0.6498 0.8078 -1.6903 7.7695
Pd-102 13.1000 2.3764 -0.3796 0.8682 -0.3231 9.2810
Pd-101 13.6288 1.1940 -0.9873 0.9031 -1.9413 9.0773
Pd-100 12.8369 2.4000 -2.0532 0.9191 0.1698 9.5513
Rh-102 15.0000 0.0000 1.6557 0.6874 -2.3483 5.3149
Rh-101 15.8000 1.1940 0.8810 0.6688 -0.9502 6.3248
Rh-100 15.0000 0.0000 0.0355 0.7721 -2.7232 6.4276
Rh- 99 12.1770 1.2060 -0.7715 0.9509 -1.6977 8.8635
Ru-101 13.6288 1.1940 2.2461 0.7582 -1.6413 7.1993
Ru-100 13.8300 2.4000 1.2905 0.7521 -0.0727 8.1397
Ru- 99 13.4132 1.2060 0.6723 0.7829 -1.1643 7.0541
Ru- 98 12.6202 2.4244 -0.2871 0.8887 -0.2888 9.3801
Ru- 97 13.1968 1.2184 -1.1012 0.8269 -0.7167 7.1258
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pd-103
--------------------------------------------------------
* E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb)
* M1: ER = 8.75 (MeV) EG = 4.00 (MeV) SIG = 1.32 (mb)
* E2: ER = 13.44 (MeV) EG = 4.87 (MeV) SIG = 2.51 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) Smith, D.A. et al.: Phys. Rev., C65, 024607 (2002).
3) Duncan, C.L. et al.: Phys. Rev., C71, 054322 (2005).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
11) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
12) Kalbach,C.: Phys. Rev. C33, 818 (1986).
13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).