46-Pd-104
46-Pd-104 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 4631
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
Mf= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2.2341 keV
The whole resonance parameters were taken from the work of
Smith et al./1/ A value of 100 meV was assumed for the
capture width. The spin of p-wave resonance was determined
from the spin distribution of the level density randomly.
Unresolved resonance region : 2.2341 keV - 180 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 5.2926e+00
Elastic 4.6683e+00
n,gamma 6.2426e-01 2.0324e+01
n,alpha 1.3518e-09
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MT=108 (n,2a) cross section
Calculated with CCONE code /4/.
MT=111 (n,2p) cross section
Calculated with CCONE code /4/.
MT=112 (n,pa) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,18,22 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: Huizenga,J.R. and Igo,G./9/
(+) omp parameters were modified.
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pd-104
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.55581 2 + *
2 1.32359 4 + *
3 1.33359 0 +
4 1.34168 2 +
5 1.79286 0 +
6 1.79430 2 +
7 1.82065 3 +
8 1.94120 2 +
9 1.94800 0 -
10 1.99910 1 +
11 2.07000 2 +
12 2.08238 4 +
13 2.10300 0 +
14 2.12550 1 +
15 2.13870 0 +
16 2.17850 1 -
17 2.18156 4 +
18 2.19200 3 - *
19 2.19340 4 +
20 2.22800 4 +
21 2.24490 2 +
22 2.24950 6 + *
23 2.26531 4 +
24 2.27650 1 +
25 2.29000 4 -
26 2.29890 4 -
27 2.33790 2 +
28 2.35160 3 -
29 2.44450 4 +
30 2.45660 3 +
31 2.46500 2 +
32 2.47900 1 +
33 2.49140 5 -
34 2.49200 0 -
35 2.52140 2 +
36 2.53340 3 +
37 2.57030 4 +
38 2.57250 3 +
39 2.61340 3 +
40 2.62220 2 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pd-105 14.9000 1.1711 2.0672 0.7067 -1.5220 6.8969
Pd-104 13.5000 2.3534 1.1560 0.7879 -0.3130 8.4969
Pd-103 13.8438 1.1824 0.6498 0.8078 -1.6903 7.7695
Pd-102 13.1000 2.3764 -0.3796 0.8682 -0.3231 9.2810
Rh-104 14.1000 0.0000 2.9724 0.6799 -2.3482 5.1092
Rh-103 15.8000 1.1824 2.3988 0.6206 -0.9205 5.8890
Rh-102 15.0000 0.0000 1.6557 0.6874 -2.3483 5.3149
Rh-101 15.8000 1.1940 0.8810 0.6688 -0.9502 6.3248
Ru-103 14.0500 1.1824 3.5429 0.7267 -1.9541 7.2112
Ru-102 14.0000 2.3764 2.6482 0.6699 0.2865 7.1898
Ru-101 13.6288 1.1940 2.2461 0.7582 -1.6413 7.1993
Ru-100 13.8300 2.4000 1.2905 0.7521 -0.0727 8.1397
Ru- 99 13.4132 1.2060 0.6723 0.7829 -1.1643 7.0541
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pd-105
--------------------------------------------------------
* E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb)
* M1: ER = 8.69 (MeV) EG = 4.00 (MeV) SIG = 1.26 (mb)
* E2: ER = 13.35 (MeV) EG = 4.85 (MeV) SIG = 2.47 (mb)
--------------------------------------------------------
References
1) Smith, D.A. et al.: Phys. Rev., C65, 024607 (2002).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).