46-Pd-105
46-Pd-105 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 4634
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2.0485 keV
The parameters were based on the basis of the data measured
by Staveloz et al./1/. Data of Bollinger et al./2/ and
of Coceva et al./3/ were also taken into account to
determine the angular momentum l and the spin j. The
average radiation width of 0.15 ev was assumed for s-wave
levels. Two negative resonances were added so as to
reproduce the thermal capture and scattering cross sections
given by Mughabghab et al./4/ Total spin j of some
resonances was tentatively estimated with a random number
method. Neutron orbital angular momentum l of some
resonances was estimated with a method of Bollinger and
Thomas/5/.
In JENDL-4, the data for 3.9 - 804 eV were replaced with
the ones obtained by Smith et al./6/ The values of
unknown J were determined from the spin distribution of
level density randomly.
Unresolved resonance region : 2.0485 keV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /7/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /8/ and CCONE /9/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 2.5547e+01
Elastic 5.1104e+00
n,gamma 2.0436e+01 1.0256e+02
n,alpha 2.2939e-04
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /9/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /9/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /9/.
MT= 22 (n,na) cross section
Calculated with CCONE code /9/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /9/.
MT= 28 (n,np) cross section
Calculated with CCONE code /9/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /9/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /9/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /9/.
MT=102 Capture cross section
Calculated with CCONE code /9/.
MT=103 (n,p) cross section
Calculated with CCONE code /9/.
MT=104 (n,d) cross section
Calculated with CCONE code /9/.
MT=105 (n,t) cross section
Calculated with CCONE code /9/.
MT=106 (n,He3) cross section
Calculated with CCONE code /9/.
MT=107 (n,a) cross section
Calculated with CCONE code /9/.
MT=111 (n,2p) cross section
Calculated with CCONE code /9/.
MT=112 (n,pa) cross section
Calculated with CCONE code /9/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /9/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /9/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /9/.
MT= 22 (n,na) reaction
Calculated with CCONE code /9/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /9/.
MT= 28 (n,np) reaction
Calculated with CCONE code /9/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /9/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /9/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /9/.
MT=102 Capture reaction
Calculated with CCONE code /9/.
*****************************************************************
Nuclear Model Calculation with CCONE code /9/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,2,15,27 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./10/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./11/
deuteron omp: Lohr,J.M. and Haeberli,W./12/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/
alpha omp: Huizenga,J.R. and Igo,G./14/
(+) omp parameters were modified.
2) Two-component exciton model/15/
* Global parametrization of Koning-Duijvestijn/16/
was used.
* Gamma emission channel/17/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/18/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/19/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/20/,/21/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pd-105
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 5/2 + *
1 0.28051 3/2 +
2 0.30625 7/2 + *
3 0.31922 5/2 +
4 0.34451 1/2 +
5 0.44238 7/2 +
6 0.44700 5/2 +
7 0.48914 11/2 -
8 0.53500 3/2 +
9 0.56075 3/2 +
10 0.64453 7/2 -
11 0.65070 3/2 +
12 0.67317 1/2 +
13 0.69666 7/2 +
14 0.72722 5/2 +
15 0.78194 9/2 + *
16 0.78700 1/2 +
17 0.80800 7/2 -
18 0.90198 5/2 +
19 0.92100 5/2 +
20 0.92913 5/2 +
21 0.93900 1/2 +
22 0.96140 3/2 -
23 0.96238 3/2 +
24 0.97015 15/2 -
25 0.97200 3/2 -
26 1.01155 7/2 -
27 1.01171 11/2 + *
28 1.07220 5/2 -
29 1.07440 5/2 +
30 1.07500 1/2 +
31 1.08796 3/2 -
32 1.09842 5/2 +
33 1.10210 3/2 +
34 1.12533 3/2 +
35 1.14081 1/2 +
36 1.14235 3/2 -
37 1.17770 5/2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pd-106 14.4000 2.3311 2.3412 0.6736 0.1590 7.3089
Pd-105 14.9000 1.1711 2.0672 0.7067 -1.5220 6.8969
Pd-104 13.5000 2.3534 1.1560 0.7879 -0.3130 8.4969
Pd-103 13.8438 1.1824 0.6498 0.8078 -1.6903 7.7695
Rh-105 15.8000 1.1711 3.4219 0.6193 -1.2405 6.1130
Rh-104 14.1000 0.0000 2.9724 0.6799 -2.3482 5.1092
Rh-103 15.8000 1.1824 2.3988 0.6206 -0.9205 5.8890
Rh-102 15.0000 0.0000 1.6557 0.6874 -2.3483 5.3149
Ru-104 13.2688 2.3534 3.6273 0.6755 0.1955 7.1592
Ru-103 14.0500 1.1824 3.5429 0.7267 -1.9541 7.2112
Ru-102 14.0000 2.3764 2.6482 0.6699 0.2865 7.1898
Ru-101 13.6288 1.1940 2.2461 0.7582 -1.6413 7.1993
Ru-100 13.8300 2.4000 1.2905 0.7521 -0.0727 8.1397
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pd-106
--------------------------------------------------------
* E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb)
* M1: ER = 8.66 (MeV) EG = 4.00 (MeV) SIG = 1.23 (mb)
* E2: ER = 13.31 (MeV) EG = 4.84 (MeV) SIG = 2.46 (mb)
--------------------------------------------------------
References
1) Staveloz, P., et al.: "Proc. Specialist's Meeting on Neutron
Cross Sections of Fission Product Nuclei, Bologna 1979",
NEANDC(E)209L, 53 (1979).
2) Bollinger, L.M., et al.: "Proc. Congres International de
Physique Nucleaire, Paris 1964", Vol.2, 673 (1964).
3) Coceva, C., et al.: Phys. Lett., 16, 159 (1965).
4) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
5) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968).
6) Smith, D.A. et al.: Phys. Rev., C65, 024607 (2002).
7) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
8) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
9) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
10) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
11) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
12) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
13) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
14) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
15) Kalbach,C.: Phys. Rev. C33, 818 (1986).
16) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
17) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
18) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
19) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
20) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
21) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).