46-Pd-106
46-Pd-106 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 4637
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
Mf= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2.0229 keV
The whole resonance parameters were taken from the work of
Smith et al./1/ A value of 100 meV was assumed for the
capture width not given by Smith et al. The spin of p-wave
resonance was determined from the spin distribution of
level density randomly. A negative level was taken from
JENDL-3.3.
Unresolved resonance region : 2.0229 keV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 5.0505e+00
Elastic 4.7334e+00
n,gamma 3.1708e-01 7.8012e+00
n,alpha 2.5684e-15
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,4,12,14 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: Huizenga,J.R. and Igo,G./9/
(+) omp parameters were modified.
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pd-106
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.51185 2 + *
2 1.12801 2 +
3 1.13377 0 +
4 1.22925 4 + *
5 1.55765 3 +
6 1.56225 2 +
7 1.70639 0 +
8 1.90431 3 -
9 1.90945 2 +
10 1.93228 4 +
11 2.00149 0 +
12 2.07629 6 + *
13 2.07663 4 +
14 2.08386 3 - *
15 2.24249 2 +
16 2.27811 0 +
17 2.28294 4 +
18 2.30556 4 -
19 2.30881 2 +
20 2.35081 4 +
21 2.36596 5 +
22 2.39750 5 -
23 2.40140 3 -
24 2.43910 2 +
25 2.47270 2 +
26 2.48466 1 -
27 2.49500 1 -
28 2.50000 2 +
29 2.50031 2 -
30 2.57842 4 -
31 2.58000 5 -
32 2.59120 0 +
33 2.62440 0 +
34 2.62687 0 +
35 2.64890 4 +
36 2.69936 6 -
37 2.70530 1 +
38 2.71200 4 +
39 2.71360 0 +
40 2.71756 0 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pd-107 15.0000 1.1601 3.1932 0.6723 -1.5375 6.6188
Pd-106 14.4000 2.3311 2.3412 0.6736 0.1590 7.3089
Pd-105 14.9000 1.1711 2.0672 0.7067 -1.5220 6.8969
Pd-104 13.5000 2.3534 1.1560 0.7879 -0.3130 8.4969
Rh-106 14.2000 0.0000 3.7991 0.5945 -1.6674 4.0000
Rh-105 15.8000 1.1711 3.4219 0.6193 -1.2405 6.1130
Rh-104 14.1000 0.0000 2.9724 0.6799 -2.3482 5.1092
Rh-103 15.8000 1.1824 2.3988 0.6206 -0.9205 5.8890
Ru-105 15.3000 1.1711 4.2450 0.6623 -1.8991 6.8479
Ru-104 13.2688 2.3534 3.6273 0.6755 0.1955 7.1592
Ru-103 14.0500 1.1824 3.5429 0.7267 -1.9541 7.2112
Ru-102 14.0000 2.3764 2.6482 0.6699 0.2865 7.1898
Ru-101 13.6288 1.1940 2.2461 0.7582 -1.6413 7.1993
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pd-107
--------------------------------------------------------
* E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb)
* M1: ER = 8.64 (MeV) EG = 4.00 (MeV) SIG = 1.20 (mb)
* E2: ER = 13.27 (MeV) EG = 4.83 (MeV) SIG = 2.44 (mb)
--------------------------------------------------------
References
1) Smith, D.A. et al.: Phys. Rev., C65, 024607 (2002).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).