46-Pd-107
46-Pd-107 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 4640
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 1.0 keV
For JENDL-2, resonance energies were based on the data by
Macklin/1/. Neutron widths were taken from experimental
data of Singh et al./2/ and Macklin/1/. The average
radiation width of 0.125 eV/2/ was assumed.
For jendl-3, the resonance energies were adopted from
JENDL-2. Neutron widths were taken from the measurement of
Anufriev et al./3/ or determined from the capture area
data measured by Macklin/4/ and an averaged radiation
width of 131+-69 meV. Radiation widths of resonances whose
neutron width was measured by Anufriev et al. were
determined from the data of the capture area measured by
Macklin/4/ and the neutron width/3/. Total spin j of
some resonances was tentatively estimated with a random
number method. Neutron orbital angular momentum l of some
resonances was estimated with a method of Bollinger and
Thomas/5/.
A negative resonance was adjusted to so as to be consistent
with the lower-limit of the thermal capture cross section
measured by Nakamura et al./6/
Unresolved resonance region : 1.0 keV - 100 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /7/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /8/ and CCONE /9/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.2706e+01
Elastic 3.4638e+00
n,gamma 9.2426e+00 1.1287e+02
n,alpha 1.1738e-06
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /9/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /9/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /9/.
MT= 22 (n,na) cross section
Calculated with CCONE code /9/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /9/.
MT= 28 (n,np) cross section
Calculated with CCONE code /9/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /9/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /9/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /9/.
MT=102 Capture cross section
Calculated with CCONE code /9/.
MT=103 (n,p) cross section
Calculated with CCONE code /9/.
MT=104 (n,d) cross section
Calculated with CCONE code /9/.
MT=105 (n,t) cross section
Calculated with CCONE code /9/.
MT=106 (n,He3) cross section
Calculated with CCONE code /9/.
MT=107 (n,a) cross section
Calculated with CCONE code /9/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /9/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /9/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /9/.
MT= 22 (n,na) reaction
Calculated with CCONE code /9/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /9/.
MT= 28 (n,np) reaction
Calculated with CCONE code /9/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /9/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /9/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /9/.
MT=102 Capture reaction
Calculated with CCONE code /9/.
*****************************************************************
Nuclear Model Calculation with CCONE code /9/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,4 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./10/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./11/
deuteron omp: Lohr,J.M. and Haeberli,W./12/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/
alpha omp: Huizenga,J.R. and Igo,G./14/
(+) omp parameters were modified.
2) Two-component exciton model/15/
* Global parametrization of Koning-Duijvestijn/16/
was used.
* Gamma emission channel/17/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/18/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/19/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/20/,/21/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pd-107
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 5/2 + *
1 0.11574 1/2 +
2 0.21460 11/2 -
3 0.30278 5/2 +
4 0.31220 7/2 + *
5 0.34818 5/2 +
6 0.36680 7/2 +
7 0.38180 3/2 +
8 0.39242 7/2 +
9 0.41200 1/2 +
10 0.47121 3/2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pd-108 14.3000 2.3094 3.1785 0.6359 0.3436 6.8413
Pd-107 15.0000 1.1601 3.1932 0.6723 -1.5375 6.6188
Pd-106 14.4000 2.3311 2.3412 0.6736 0.1590 7.3089
Pd-105 14.9000 1.1711 2.0672 0.7067 -1.5220 6.8969
Rh-107 13.0075 1.1601 4.0295 0.7116 -1.4170 6.5036
Rh-106 14.2000 0.0000 3.7991 0.5945 -1.6674 4.0000
Rh-105 15.8000 1.1711 3.4219 0.6193 -1.2405 6.1130
Rh-104 14.1000 0.0000 2.9724 0.6799 -2.3482 5.1092
Ru-106 13.4840 2.3311 4.1609 0.6686 0.0022 7.2594
Ru-105 15.3000 1.1711 4.2450 0.6623 -1.8991 6.8479
Ru-104 13.2688 2.3534 3.6273 0.6755 0.1955 7.1592
Ru-103 14.0500 1.1824 3.5429 0.7267 -1.9541 7.2112
Ru-102 14.0000 2.3764 2.6482 0.6699 0.2865 7.1898
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pd-108
--------------------------------------------------------
* E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb)
* M1: ER = 8.61 (MeV) EG = 4.00 (MeV) SIG = 1.17 (mb)
* E2: ER = 13.23 (MeV) EG = 4.81 (MeV) SIG = 2.42 (mb)
--------------------------------------------------------
References
1) Macklin, R.L.: private communication (1984).
2) Singh, U.N., et al.: Nucl. Sci. Eng., 67, 54 (1978).
3) Anufriev, V.A. et al.: Proc Fifth All Union Conf on Neutron
Physics, Kiev, Sept. 1980, Vol. 2, 159 (1980).
4) Macklin, R.L. : Nucl. Sci. Eng., 89, 79 (1985).
5) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968).
6) Nakamura, S., et al.: J. Nucl. Sci. Technol., 44, 103 (2007).
7) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
8) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
9) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
10) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
11) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
12) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
13) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
14) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
15) Kalbach,C.: Phys. Rev. C33, 818 (1986).
16) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
17) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
18) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
19) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
20) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
21) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).