46-Pd-107

 46-Pd-107 JAEA       EVAL-Dec09 N.Iwamoto,K.Shibata              
                      DIST-MAY10                       20100119   
----JENDL-4.0         MATERIAL 4640                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
History                                                           
09-12 The resolved resonance parameters were evaluated by         
      K.Shibata.                                                  
      The data above the resolved resonance region were evaluated 
      and compiled by N.Iwamoto.                                  
                                                                  
MF= 1 General information                                         
  MT=451 Descriptive data and directory                           
                                                                  
MF= 2  Resonance parameters                                       
  MT=151 Resolved and unresolved resonance parameters             
    Resolved resonance region (MLBW formula) : below 1.0 keV      
      For JENDL-2, resonance energies were based on the data by   
      Macklin/1/.  Neutron widths were taken from experimental    
      data of Singh et al./2/ and Macklin/1/.  The average        
      radiation width of 0.125 eV/2/ was assumed.                 
      For jendl-3, the resonance energies were adopted from       
      JENDL-2.  Neutron widths were taken from the measurement of 
      Anufriev et al./3/ or determined from the capture area      
      data measured by Macklin/4/ and an averaged radiation       
      width of 131+-69 meV.  Radiation widths of resonances whose 
      neutron width was measured by Anufriev et al. were          
      determined from the data of the capture area measured by    
      Macklin/4/ and the neutron width/3/.  Total spin j of       
      some resonances was tentatively estimated with a random     
      number method.  Neutron orbital angular momentum l of some  
      resonances was estimated with a method of Bollinger and     
      Thomas/5/.                                                  
      A negative resonance was adjusted to so as to be consistent 
      with the lower-limit of the thermal capture cross section   
      measured by Nakamura et al./6/                              
                                                                  
    Unresolved resonance region : 1.0 keV - 100 keV               
      The unresolved resonance paramters (URP) were determined by 
      ASREP code /7/ so as to reproduce the evaluated total and   
      capture cross sections calculated with optical model code   
      OPTMAN /8/ and CCONE /9/. The unresolved parameters         
      should be used only for self-shielding calculation.         
                                                                  
      Thermal cross sections and resonance integrals at 300 K     
      ----------------------------------------------------------  
                       0.0253 eV           res. integ. (*)        
                        (barn)               (barn)               
      ----------------------------------------------------------  
       Total           1.2706e+01                                 
       Elastic         3.4638e+00                                 
       n,gamma         9.2426e+00           1.1287e+02            
       n,alpha         1.1738e-06                                 
      ----------------------------------------------------------  
         (*) Integrated from 0.5 eV to 10 MeV.                    
                                                                  
MF= 3 Neutron cross sections                                      
  MT=  1 Total cross section                                      
    Sum of partial cross sections.                                
                                                                  
  MT=  2 Elastic scattering cross section                         
    Obtained by subtracting non-elastic scattering cross sections 
      from total cross section.                                   
                                                                  
  MT=  4 (n,n') cross section                                     
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 16 (n,2n) cross section                                     
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 17 (n,3n) cross section                                     
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 22 (n,na) cross section                                     
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 24 (n,2na) cross section                                    
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 28 (n,np) cross section                                     
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 32 (n,nd) cross section                                     
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 41 (n,2np) cross section                                    
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 51-91 (n,n') cross section                                  
    Calculated with CCONE code /9/.                               
                                                                  
  MT=102 Capture cross section                                    
    Calculated with CCONE code /9/.                               
                                                                  
  MT=103 (n,p) cross section                                      
    Calculated with CCONE code /9/.                               
                                                                  
  MT=104 (n,d) cross section                                      
    Calculated with CCONE code /9/.                               
                                                                  
  MT=105 (n,t) cross section                                      
    Calculated with CCONE code /9/.                               
                                                                  
  MT=106 (n,He3) cross section                                    
    Calculated with CCONE code /9/.                               
                                                                  
  MT=107 (n,a) cross section                                      
    Calculated with CCONE code /9/.                               
                                                                  
MF= 4 Angular distributions of emitted neutrons                   
  MT=  2 Elastic scattering                                       
    Calculated with CCONE code /9/.                               
                                                                  
MF= 6 Energy-angle distributions of emitted particles             
  MT= 16 (n,2n) reaction                                          
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 17 (n,3n) reaction                                          
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 22 (n,na) reaction                                          
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 24 (n,2na) reaction                                         
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 28 (n,np) reaction                                          
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 32 (n,nd) reaction                                          
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 41 (n,2np) reaction                                         
    Calculated with CCONE code /9/.                               
                                                                  
  MT= 51-91 (n,n') reaction                                       
    Calculated with CCONE code /9/.                               
                                                                  
  MT=102 Capture reaction                                         
    Calculated with CCONE code /9/.                               
                                                                  
                                                                  
                                                                  
***************************************************************** 
       Nuclear Model Calculation with CCONE code /9/              
***************************************************************** 
                                                                  
  Models and parameters used in the CCONE calculation             
  1) Optical model                                                
    * coupled channels calculation                                
      coupled levels: 0,4 (see Table 1)                           
                                                                  
    * optical model potential                                     
      neutron  omp: Kunieda,S. et al./10/ (+)                     
      proton   omp: Koning,A.J. and Delaroche,J.P./11/            
      deuteron omp: Lohr,J.M. and Haeberli,W./12/                 
      triton   omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/     
      He3      omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/     
      alpha    omp: Huizenga,J.R. and Igo,G./14/                  
      (+) omp parameters were modified.                           
                                                                  
  2) Two-component exciton model/15/                              
    * Global parametrization of Koning-Duijvestijn/16/            
      was used.                                                   
    * Gamma emission channel/17/ was added to simulate direct     
      and semi-direct capture reaction.                           
                                                                  
  3) Hauser-Feshbach statistical model                            
    * Width fluctuation correction/18/ was applied.               
    * Neutron, proton, deuteron, triton, He3, alpha and gamma     
      decay channel were taken into account.                      
    * Transmission coefficients of neutrons were taken from       
      optical model calculation.                                  
    * The level scheme of the target is shown in Table 1.         
    * Level density formula of constant temperature and Fermi-gas 
      model were used with shell energy correction/19/.           
      Parameters are shown in Table 2.                            
    * Gamma-ray strength function of generalized Lorentzian form  
      /20/,/21/ was used for E1 transition.                       
      For M1 and E2 transitions the standard Lorentzian form was  
      adopted. The prameters are shown in Table 3.                
                                                                  
                                                                  
------------------------------------------------------------------
                              Tables                              
------------------------------------------------------------------
                                                                  
Table 1. Level Scheme of Pd-107                                   
  -------------------                                             
  No.  Ex(MeV)  J  PI                                             
  -------------------                                             
   0  0.00000  5/2 +  *                                           
   1  0.11574  1/2 +                                              
   2  0.21460 11/2 -                                              
   3  0.30278  5/2 +                                              
   4  0.31220  7/2 +  *                                           
   5  0.34818  5/2 +                                              
   6  0.36680  7/2 +                                              
   7  0.38180  3/2 +                                              
   8  0.39242  7/2 +                                              
   9  0.41200  1/2 +                                              
  10  0.47121  3/2 +                                              
  -------------------                                             
  *) Coupled levels in CC calculation                             
                                                                  
Table 2. Level density parameters                                 
  --------------------------------------------------------        
  Nuclide      a*    Pair  Eshell       T      E0  Ematch         
            1/MeV     MeV     MeV     MeV     MeV     MeV         
  --------------------------------------------------------        
   Pd-108 14.3000  2.3094  3.1785  0.6359  0.3436  6.8413         
   Pd-107 15.0000  1.1601  3.1932  0.6723 -1.5375  6.6188         
   Pd-106 14.4000  2.3311  2.3412  0.6736  0.1590  7.3089         
   Pd-105 14.9000  1.1711  2.0672  0.7067 -1.5220  6.8969         
   Rh-107 13.0075  1.1601  4.0295  0.7116 -1.4170  6.5036         
   Rh-106 14.2000  0.0000  3.7991  0.5945 -1.6674  4.0000         
   Rh-105 15.8000  1.1711  3.4219  0.6193 -1.2405  6.1130         
   Rh-104 14.1000  0.0000  2.9724  0.6799 -2.3482  5.1092         
   Ru-106 13.4840  2.3311  4.1609  0.6686  0.0022  7.2594         
   Ru-105 15.3000  1.1711  4.2450  0.6623 -1.8991  6.8479         
   Ru-104 13.2688  2.3534  3.6273  0.6755  0.1955  7.1592         
   Ru-103 14.0500  1.1824  3.5429  0.7267 -1.9541  7.2112         
   Ru-102 14.0000  2.3764  2.6482  0.6699  0.2865  7.1898         
  --------------------------------------------------------        
                                                                  
Table 3. Gamma-ray strength function for Pd-108                   
  --------------------------------------------------------        
  * E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb)        
  * M1: ER =  8.61 (MeV) EG = 4.00 (MeV) SIG =   1.17 (mb)        
  * E2: ER = 13.23 (MeV) EG = 4.81 (MeV) SIG =   2.42 (mb)        
  --------------------------------------------------------        
                                                                  
References                                                        
 1) Macklin, R.L.: private communication (1984).                  
 2) Singh, U.N., et al.: Nucl. Sci. Eng., 67, 54 (1978).          
 3) Anufriev, V.A. et al.: Proc Fifth All Union Conf on Neutron   
    Physics, Kiev, Sept. 1980, Vol. 2, 159 (1980).                
 4) Macklin, R.L. : Nucl. Sci. Eng., 89, 79 (1985).               
 5) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968).    
 6) Nakamura, S., et al.: J. Nucl. Sci. Technol., 44, 103 (2007). 
 7) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)              
    [in Japanese].                                                
 8) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).   
 9) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).           
10) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).     
11) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)  
    [Global potential].                                           
12) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).      
13) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.             
    J.H.Williams Lab., Univ. Minnesota (1969).                    
14) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).         
15) Kalbach,C.: Phys. Rev. C33, 818 (1986).                       
16) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).   
17) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).   
18) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).                  
19) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151   
    (1994).                                                       
20) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).              
21) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).