46-Pd-108
46-Pd-108 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 4643
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 9 keV
In JENDL-3.3, the parameters were mainly taken from the
recommendation of Mughabghab et al./1/ The average
radiation with of 77 meV/1/ was assumed.
In JENDL-4, the data for 33 eV - 2.3 keV were replaced
with the ones obtained by Smith et al./2/ A value of
77 meV was used for unknown radiation widths. Spin of the
p-wave resonance was determined from the spin distribution
of level density randomly. The parameters for 32.98 and
90.98-eV s-wave resonances were alightly adjusted.
Unresolved resonance region : 9 keV - 160 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /3/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /4/ and CCONE /5/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.0007e+01
Elastic 1.9618e+00
n,gamma 8.0455e+00 2.4317e+02
n,alpha 4.3578e-22
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /5/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /5/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /5/.
MT= 22 (n,na) cross section
Calculated with CCONE code /5/.
MT= 28 (n,np) cross section
Calculated with CCONE code /5/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /5/.
MT=102 Capture cross section
Calculated with CCONE code /5/.
MT=103 (n,p) cross section
Calculated with CCONE code /5/.
MT=104 (n,d) cross section
Calculated with CCONE code /5/.
MT=105 (n,t) cross section
Calculated with CCONE code /5/.
MT=106 (n,He3) cross section
Calculated with CCONE code /5/.
MT=107 (n,a) cross section
Calculated with CCONE code /5/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /5/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /5/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /5/.
MT= 22 (n,na) reaction
Calculated with CCONE code /5/.
MT= 28 (n,np) reaction
Calculated with CCONE code /5/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /5/.
MT=102 Capture reaction
Calculated with CCONE code /5/.
*****************************************************************
Nuclear Model Calculation with CCONE code /5/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,3,10,14 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./6/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./7/
deuteron omp: Lohr,J.M. and Haeberli,W./8/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
alpha omp: Huizenga,J.R. and Igo,G./10/
(+) omp parameters were modified.
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/14/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/15/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/16/,/17/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pd-108
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.43394 2 + *
2 0.93114 2 +
3 1.04825 4 + *
4 1.05278 0 +
5 1.31422 0 +
6 1.33522 3 +
7 1.44118 2 +
8 1.53996 1 +
9 1.62520 4 +
10 1.77116 6 + *
11 1.95700 4 +
12 1.98986 4 +
13 2.01500 1 -
14 2.04665 3 - *
15 2.09867 2 +
16 2.14100 0 +
17 2.21801 2 +
18 2.28121 1 -
19 2.28249 0 +
20 2.32480 5 -
21 2.36200 2 +
22 2.39140 2 +
23 2.39750 8 +
24 2.40410 0 +
25 2.41800 0 +
26 2.42200 6 +
27 2.46600 4 +
28 2.47757 2 +
29 2.53100 0 +
30 2.53640 0 +
31 2.54020 4 +
32 2.54840 8 +
33 2.57800 0 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pd-109 16.0000 1.1494 3.8267 0.6463 -1.8210 6.7457
Pd-108 14.3000 2.3094 3.1785 0.6359 0.3436 6.8413
Pd-107 15.0000 1.1601 3.1932 0.6723 -1.5375 6.6188
Pd-106 14.4000 2.3311 2.3412 0.6736 0.1590 7.3089
Rh-108 15.6000 0.0000 4.1884 0.5114 -1.3068 3.3132
Rh-107 13.0075 1.1601 4.0295 0.7116 -1.4170 6.5036
Rh-106 14.2000 0.0000 3.7991 0.5945 -1.6674 4.0000
Rh-105 15.8000 1.1711 3.4219 0.6193 -1.2405 6.1130
Ru-107 15.5000 1.1601 4.4476 0.6172 -1.4266 6.1858
Ru-106 13.4840 2.3311 4.1609 0.6686 0.0022 7.2594
Ru-105 15.3000 1.1711 4.2450 0.6623 -1.8991 6.8479
Ru-104 13.2688 2.3534 3.6273 0.6755 0.1955 7.1592
Ru-103 14.0500 1.1824 3.5429 0.7267 -1.9541 7.2112
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pd-109
--------------------------------------------------------
* E1: ER = 15.92 (MeV) EG = 7.18 (MeV) SIG = 199.00 (mb)
* M1: ER = 8.58 (MeV) EG = 4.00 (MeV) SIG = 1.14 (mb)
* E2: ER = 13.19 (MeV) EG = 4.80 (MeV) SIG = 2.41 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) Smith, D.A. et al.: Phys. Rev., C65, 024607 (2002).
3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
4) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
7) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
10) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
11) Kalbach,C.: Phys. Rev. C33, 818 (1986).
12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).