61-Pm-147
61-Pm-147 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6149
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonances
RESOLVED RESONANCE PARAMETERS FOR MLBW FORMULA (BELOW 102 EV)
FOR JENDL-3, THE EXISTING JENDL-2 DATA WERE ENTIRELY
REPLACED BY NEW EVALUATION MENTIONED BELOW. THE RADIATION
WIDTHS AND NEUTRON WIDTHS WERE ADOPTED FROM REF./1/. THE
ORBITAL ANGULAR MOMENTUM L WAS ASSIGNED BY TAKING INTO
ACCOUNT THE MAGNITUDE OF NEUTRON WIDTHS. TOTAL SPIN J OF
SOME RESONANCES WAS TENTATIVELY ESTIMATED WITH A RANDOM
NUMBER METHOD. SCATTERING RADIUS OF 8.21 FM WAS ESTIMETED
FROM THE MEASURED VALUES FOR ADJACENT NUCLIDES/1/. A
NEGATIVE RESONANCE WAS ADDED SO AS TO REPRODUCE THE THERMAL
CAPTURE AND ELASTIC SCATTERING CROSS SECTIONS GIVEN BY
MUGHABGHAB/1/.
Unresolved resonance region : 102.0 eV - 100.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.8871e+02
Elastic 2.0979e+01
n,gamma 1.6773e+02 2.1876e+03
n,alpha 1.0533e-03
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /4/.
MT= 25 (n,3na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /4/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /4/.
MT= 25 (n,3na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /4/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,3,14 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: Huizenga,J.R. and Igo,G./9/
(+) omp parameters were modified.
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pm-147
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 7/2 + *
1 0.09110 5/2 +
2 0.35000 5/2 -
3 0.38000 9/2 + *
4 0.40820 9/2 +
5 0.41051 3/2 +
6 0.48925 7/2 +
7 0.50000 5/2 +
8 0.53101 5/2 +
9 0.62000 5/2 +
10 0.63280 1/2 +
11 0.64130 5/2 +
12 0.64930 11/2 -
13 0.66000 9/2 +
14 0.66720 11/2 + *
15 0.68046 5/2 +
16 0.68589 5/2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412
Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682
Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135
Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282
Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470
Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542
Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189
Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190
Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179
Pr-146 17.5893 0.0000 2.4188 0.5462 -1.6453 4.0472
Pr-145 16.8637 0.9965 1.7883 0.6002 -0.8883 5.5766
Pr-144 15.5000 0.0000 0.9153 0.6715 -1.9662 5.0412
Pr-143 16.6639 1.0035 0.4682 0.6161 -0.5920 5.4208
Pr-142 16.4000 0.0000 -0.4377 0.7390 -2.6336 6.4135
Pr-141 16.4637 1.0106 -1.2280 0.6590 -0.3966 5.5793
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pm-148
--------------------------------------------------------
K0 = 2.040 E0 = 4.500 (MeV)
* E1: ER = 13.19 (MeV) EG = 3.59 (MeV) SIG = 121.81 (mb)
ER = 15.85 (MeV) EG = 5.09 (MeV) SIG = 243.63 (mb)
* M1: ER = 7.75 (MeV) EG = 4.00 (MeV) SIG = 1.24 (mb)
* E2: ER = 11.91 (MeV) EG = 4.33 (MeV) SIG = 3.45 (mb)
--------------------------------------------------------
References
1) MUGHABGHAB,S.F.: "NEUTRON CROSS SECTIONS, VOL. I, PART B",
ACADEMIC PRESS (1984).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).