61-Pm-148
61-Pm-148 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6152
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonances
No resolved resonance parameters
Unresolved resonance region : 4.2 eV - 100.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /1/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /2/ and CCONE /3/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 2.0073e+03
Elastic 6.2216e+00
n,gamma 2.0008e+03 1.4478e+03
n,p 3.8255e-08
n,alpha 4.3434e-01
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /3/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /3/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /3/.
MT= 22 (n,na) cross section
Calculated with CCONE code /3/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /3/.
MT= 28 (n,np) cross section
Calculated with CCONE code /3/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /3/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /3/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /3/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /3/.
MT=102 Capture cross section
Calculated with CCONE code /3/.
MT=103 (n,p) cross section
Calculated with CCONE code /3/.
MT=104 (n,d) cross section
Calculated with CCONE code /3/.
MT=105 (n,t) cross section
Calculated with CCONE code /3/.
MT=106 (n,He3) cross section
Calculated with CCONE code /3/.
MT=107 (n,a) cross section
Calculated with CCONE code /3/.
MT=108 (n,2a) cross section
Calculated with CCONE code /3/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /3/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /3/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /3/.
MT= 22 (n,na) reaction
Calculated with CCONE code /3/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /3/.
MT= 28 (n,np) reaction
Calculated with CCONE code /3/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /3/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /3/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /3/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /3/.
MT=102 Capture reaction
Calculated with CCONE code /3/.
*****************************************************************
Nuclear Model Calculation with CCONE code /3/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,18,19,29,32 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./4/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./5/
deuteron omp: Lohr,J.M. and Haeberli,W./6/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
alpha omp: Huizenga,J.R. and Igo,G./8/
(+) omp parameters were modified.
2) Two-component exciton model/9/
* Global parametrization of Koning-Duijvestijn/10/
was used.
* Gamma emission channel/11/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/12/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/13/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/14/,/15/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Pm-148
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 1 - *
1 0.07570 2 - *
2 0.13720 3 - *
3 0.13790 6 -
4 0.21530 6 -
5 0.21990 3 +
6 0.29200 6 +
7 0.30290 4 +
8 0.30470 2 -
9 0.30890 6 +
10 0.36340 7 +
11 0.37970 7 +
12 0.38530 7 +
13 0.38810 6 +
14 0.40960 6 -
15 0.41350 6 +
16 0.44010 7 -
17 0.45200 7 +
18 0.46200 4 - *
19 0.52640 5 - *
20 0.52940 4 +
21 0.54340 6 +
22 0.54570 7 -
23 0.55030 6 +
24 0.56130 7 +
25 0.56420 5 -
26 0.57310 7 +
27 0.61120 8 +
28 0.62270 7 +
29 0.64190 6 - *
30 0.65570 5 -
31 0.66050 6 -
32 0.66950 7 - *
33 0.67290 7 +
34 0.70000 7 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264
Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412
Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682
Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135
Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282
Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010
Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470
Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542
Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189
Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190
Pr-147 17.0632 0.9897 3.0053 0.5856 -1.1357 5.6888
Pr-146 17.5893 0.0000 2.4188 0.5462 -1.6453 4.0472
Pr-145 16.8637 0.9965 1.7883 0.6002 -0.8883 5.5766
Pr-144 15.5000 0.0000 0.9153 0.6715 -1.9662 5.0412
Pr-143 16.6639 1.0035 0.4682 0.6161 -0.5920 5.4208
Pr-142 16.4000 0.0000 -0.4377 0.7390 -2.6336 6.4135
Pr-141 16.4637 1.0106 -1.2280 0.6590 -0.3966 5.5793
--------------------------------------------------------
Table 3. Gamma-ray strength function for Pm-149
--------------------------------------------------------
K0 = 2.000 E0 = 4.500 (MeV)
* E1: ER = 12.96 (MeV) EG = 3.47 (MeV) SIG = 122.75 (mb)
ER = 15.98 (MeV) EG = 5.17 (MeV) SIG = 245.51 (mb)
* M1: ER = 7.73 (MeV) EG = 4.00 (MeV) SIG = 1.23 (mb)
* E2: ER = 11.88 (MeV) EG = 4.32 (MeV) SIG = 3.44 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
2) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
9) Kalbach,C.: Phys. Rev. C33, 818 (1986).
10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).