62-Sm-144
62-Sm-144 JAEA EVAL-Nov09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6225
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 resolved and unresolved resonance parameters
THE RESOLVED RESONANCE PARAMETERS WERE EVALUATED ON THE BASIS
OF THE DATA RECENTLY MEASURED BY MACKLIN ET AL./1/
FOR RESONANCES WHOSE NEUTRON WIDTH WAS NOT MEASURED, THE
NEUTRON WIDTH WAS OBTAINED FROM THE CAPTURE AREA ASSUMING
THE RADIATION WIDTH OF 0.074 EV AND 0.089 EV FOR THE S-WAVE
AND P-WAVE RESONANCES, RESPECTIVELY. FOR P-WAVE RESONANCES,
THE VALUE OF THE TOTAL SPIN J WAS ARBITRARILY ASSIGNED WITH
THE RATIO 1:2 IN THE NUMBER OF THE RESONANCES WITH J=1/2
AND J=3/2. TO REPRODUCE THE THERMAL CROSS SECTION OF
1.64+-0.10 B AT 0.0253 EV/2/, A NEGATIVE RESONANCE WAS
ADDED AT -104 EV. THE EFFECTIVE SCATTERING RADIUS WAS
EMPLOYED FROM THE MEASURED DATA BY MACKLIN ET AL./1/
Unresolved resonance region : 10.0 keV - 160.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /3/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /4/ and CCONE /5/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 2.4027e+00
Elastic 7.6157e-01
n,gamma 1.6411e+00 1.8549e+00
n,alpha 3.0297e-05
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /5/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /5/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /5/.
MT= 22 (n,na) cross section
Calculated with CCONE code /5/.
MT= 28 (n,np) cross section
Calculated with CCONE code /5/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /5/.
MT= 44 (n,n2p) cross section
Calculated with CCONE code /5/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /5/.
MT=102 Capture cross section
Calculated with CCONE code /5/.
MT=103 (n,p) cross section
Calculated with CCONE code /5/.
MT=104 (n,d) cross section
Calculated with CCONE code /5/.
MT=105 (n,t) cross section
Calculated with CCONE code /5/.
MT=106 (n,He3) cross section
Calculated with CCONE code /5/.
MT=107 (n,a) cross section
Calculated with CCONE code /5/.
MT=108 (n,2a) cross section
Calculated with CCONE code /5/.
MT=111 (n,2p) cross section
Calculated with CCONE code /5/.
MT=112 (n,pa) cross section
Calculated with CCONE code /5/.
MT=115 (n,pd) cross section
Calculated with CCONE code /5/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /5/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /5/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /5/.
MT= 22 (n,na) reaction
Calculated with CCONE code /5/.
MT= 28 (n,np) reaction
Calculated with CCONE code /5/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /5/.
MT= 44 (n,n2p) reaction
Calculated with CCONE code /5/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /5/.
MT=102 Capture reaction
Calculated with CCONE code /5/.
MT=108 (n,2a) reaction
Calculated with CCONE code /5/.
MT=111 (n,2p) reaction
Calculated with CCONE code /5/.
MT=112 (n,pa) reaction
Calculated with CCONE code /5/.
MT=115 (n,pd) reaction
Calculated with CCONE code /5/.
*****************************************************************
Nuclear Model Calculation with CCONE code /5/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,5,6 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./6/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./7/
deuteron omp: Lohr,J.M. and Haeberli,W./8/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
alpha omp: McFadden,L. and Satchler,G.R./10/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/14/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/15/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/16/,/17/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sm-144
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 1.66003 2 + *
2 1.81017 3 -
3 2.12000 0 +
4 2.16700 3 -
5 2.19089 4 + *
6 2.32360 6 + *
7 2.42321 2 +
8 2.47765 0 +
9 2.58778 4 +
10 2.64470 1 +
11 2.66069 2 +
12 2.68839 3 +
13 2.70704 5 +
14 2.72900 1 +
15 2.79965 2 +
16 2.80400 2 +
17 2.82252 0 +
18 2.82571 5 -
19 2.82700 0 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sm-145 16.2400 0.9965 -0.2231 0.5462 0.3438 3.9136
Sm-144 16.1000 2.0000 -1.0862 0.6960 0.2760 7.1522
Sm-143 20.5000 1.0035 -0.2532 0.3689 0.8950 2.4246
Sm-142 17.2820 2.0140 0.2631 0.5569 0.9064 5.5796
Pm-144 17.3850 0.0000 -0.0322 0.6228 -1.7232 4.6797
Pm-143 16.6639 1.0035 -0.8001 0.5676 0.2359 4.2170
Pm-142 17.1803 0.0000 -0.2854 0.5225 -0.6526 2.8315
Pm-141 16.4637 1.0106 0.6651 0.6120 -0.5464 5.3348
Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179
Nd-142 15.0000 2.0140 -1.2557 0.6895 0.7987 6.4278
Nd-141 17.8113 1.0106 -0.4633 0.5388 0.1405 4.2362
Nd-140 17.0742 2.0284 0.1378 0.5639 0.9372 5.6042
Nd-139 17.6073 1.0178 0.9560 0.5563 -0.3594 4.8725
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sm-145
--------------------------------------------------------
* E1: ER = 14.92 (MeV) EG = 4.54 (MeV) SIG = 358.40 (mb)
* M1: ER = 7.80 (MeV) EG = 4.00 (MeV) SIG = 0.67 (mb)
* E2: ER = 11.99 (MeV) EG = 4.37 (MeV) SIG = 3.61 (mb)
--------------------------------------------------------
References
1) MACKLIN,R.L. ET AL.: PHYS. REV., C48, 1120 (1993).
2) ALEXANDER,C.W. ET AL.: NUCL. SCI. ENG., 95, 194 (1987).
3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
4) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
7) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
10) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
11) Kalbach,C.: Phys. Rev. C33, 818 (1986).
12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).