62-Sm-147
62-Sm-147 JAEA+ EVAL-Nov09 N.Iwamoto,A.Zukeran
DIST-MAY10 20100330
----JENDL-4.0 MATERIAL 6234
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The resolved resonance parameters were evaluated by
A.Zukeran.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below 1.20 keV
For JENDL-2, the data of Mizumoto/1/ were adopted. The
J-assignment was based on Kviteck and Popov/2/, Cauvin et
al./3/ and Karzhavina et al./4/ Orbital angular
momentum L was assumed to be 0 for all resonances. Average
radiation width and scattering radius were taken from
Mughabghab/5/.
For JENDL-3, total spin j of some resonances was tentatively
estimated with a random number method. Parameters of a
negative resonance were modified so as to reproduce the
thermal capture cross section given by Mughabghab.
In JENDL-4, the radiation widths for 27.16 - 290.1 eV were
replaced with the ones obatained by Georgiev et al./6/
Unresolved resonance region : 1.2 keV - 150.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /7/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /8/ and CCONE /9/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 6.4249e+01
Elastic 7.2216e+00
n,gamma 5.7026e+01 7.9599e+02
n,alpha 5.7759e-04
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /9/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /9/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /9/.
MT= 22 (n,na) cross section
Calculated with CCONE code /9/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /9/.
MT= 28 (n,np) cross section
Calculated with CCONE code /9/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /9/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /9/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /9/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /9/.
MT=102 Capture cross section
Calculated with CCONE code /9/.
MT=103 (n,p) cross section
Calculated with CCONE code /9/.
MT=104 (n,d) cross section
Calculated with CCONE code /9/.
MT=105 (n,t) cross section
Calculated with CCONE code /9/.
MT=106 (n,He3) cross section
Calculated with CCONE code /9/.
MT=107 (n,a) cross section
Calculated with CCONE code /9/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /9/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /9/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /9/.
MT= 22 (n,na) reaction
Calculated with CCONE code /9/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /9/.
MT= 28 (n,np) reaction
Calculated with CCONE code /9/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /9/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /9/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /9/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /9/.
MT=102 Capture reaction
Calculated with CCONE code /9/.
*****************************************************************
Nuclear Model Calculation with CCONE code /9/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,3,6,34 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./10/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./11/
deuteron omp: Lohr,J.M. and Haeberli,W./12/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./13/
alpha omp: McFadden,L. and Satchler,G.R./14/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/15/
* Global parametrization of Koning-Duijvestijn/16/
was used.
* Gamma emission channel/17/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/18/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/19/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/20/,/21/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sm-147
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 7/2 - *
1 0.12122 5/2 - *
2 0.19740 3/2 -
3 0.71660 11/2 - *
4 0.72000 1/2 +
5 0.79920 3/2 -
6 0.80930 9/2 - *
7 0.88400 1/2 +
8 0.90000 7/2 -
9 0.92280 1/2 -
10 0.93160 11/2 -
11 0.97800 1/2 +
12 1.02000 9/2 -
13 1.03070 13/2 +
14 1.04350 3/2 -
15 1.05430 3/2 +
16 1.06390 5/2 +
17 1.06905 9/2 -
18 1.07700 5/2 -
19 1.10686 9/2 +
20 1.16200 11/2 +
21 1.16900 1/2 -
22 1.17300 11/2 +
23 1.18010 9/2 -
24 1.22130 1/2 +
25 1.25800 7/2 +
26 1.31767 3/2 +
27 1.31785 11/2 -
28 1.31807 7/2 +
29 1.34965 7/2 -
30 1.43000 3/2 -
31 1.43800 9/2 +
32 1.44911 11/2 -
33 1.45321 3/2 -
34 1.45840 15/2 - *
35 1.46400 11/2 -
36 1.47141 3/2 -
37 1.47188 3/2 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610
Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131
Sm-146 17.6964 1.9863 0.5792 0.5450 0.8159 5.5739
Sm-145 16.2400 0.9965 -0.2231 0.5462 0.3438 3.9136
Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682
Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135
Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282
Pm-144 17.3850 0.0000 -0.0322 0.6228 -1.7232 4.6797
Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542
Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189
Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190
Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179
Nd-142 15.0000 2.0140 -1.2557 0.6895 0.7987 6.4278
Nd-141 17.8113 1.0106 -0.4633 0.5388 0.1405 4.2362
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sm-148
--------------------------------------------------------
* E1: ER = 14.82 (MeV) EG = 5.09 (MeV) SIG = 339.00 (mb)
* M1: ER = 7.75 (MeV) EG = 4.00 (MeV) SIG = 0.80 (mb)
* E2: ER = 11.91 (MeV) EG = 4.33 (MeV) SIG = 3.57 (mb)
--------------------------------------------------------
References
1) Mizumoto, M.: Nucl. Phys., A357, 90 (1981).
2) Kviteck, J., Popov, Ju.P.: Nucl. Phys., A154, 177 (1970).
3) Cauvin, B., et al.: "Proc. 3rd Conf on Neutron Cross Sections
and Technol., Knoxville 1971", 785.
4) Karzhavina, E.N., et al.: JINR-P3-6237 (1972).
5) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B",
Academic Press (1984).
6) Georgiev, G., et al.: Nucl. Phys., A565, 643 (1993).
7) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
8) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
9) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
10) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
11) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
12) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
13) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
14) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
15) Kalbach,C.: Phys. Rev. C33, 818 (1986).
16) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
17) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
18) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
19) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
20) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
21) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).