62-Sm-148
62-Sm-148 JAEA+ EVAL-Nov09 N.Iwamoto,A.Zukeran
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6237
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The resolved resonance parameters were evaluated by
A.Zukeran.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 5.5 keV
In JENDL-3.3, resonance parameters were evaluated on the
basis of the data measured by Mizumoto and Zhao/1,2/.
Resonance energies and neutron widths were taken from the
transmission measurments by Mizumoto and zhao. Radiation
width of 0.06 eV used for their analysis was adopted.
A negative resonance was added so as to reproduce the
thermal capture cross section given by Mughabghab/3/.
In JENDL-4, the data for 94.9 - 1478 eV were replaced with
the ones obtained by Georgiev et al./4/ The parameters
for the negative resonance were re-adjusted.
Unresolved resonance region : 5.5 keV - 150.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /5/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /6/ and CCONE /7/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 3.5952e+00
Elastic 1.2058e+00
n,gamma 2.3894e+00 4.3486e+01
n,alpha 1.2767e-05
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /7/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /7/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /7/.
MT= 22 (n,na) cross section
Calculated with CCONE code /7/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /7/.
MT= 25 (n,3na) cross section
Calculated with CCONE code /7/.
MT= 28 (n,np) cross section
Calculated with CCONE code /7/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /7/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /7/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /7/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /7/.
MT=102 Capture cross section
Calculated with CCONE code /7/.
MT=103 (n,p) cross section
Calculated with CCONE code /7/.
MT=104 (n,d) cross section
Calculated with CCONE code /7/.
MT=105 (n,t) cross section
Calculated with CCONE code /7/.
MT=106 (n,He3) cross section
Calculated with CCONE code /7/.
MT=107 (n,a) cross section
Calculated with CCONE code /7/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /7/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /7/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /7/.
MT= 22 (n,na) reaction
Calculated with CCONE code /7/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /7/.
MT= 25 (n,3na) reaction
Calculated with CCONE code /7/.
MT= 28 (n,np) reaction
Calculated with CCONE code /7/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /7/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /7/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /7/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /7/.
MT=102 Capture reaction
Calculated with CCONE code /7/.
*****************************************************************
Nuclear Model Calculation with CCONE code /7/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,3 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./8/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./9/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./10/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
alpha omp: McFadden,L. and Satchler,G.R./12/
(+) omp parameters were modified.
2) Two-component exciton model/13/
* Global parametrization of Koning-Duijvestijn/14/
was used.
* Gamma emission channel/15/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/16/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/17/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/18/,/19/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sm-148
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.55026 2 + *
2 1.16153 3 -
3 1.18026 4 + *
4 1.42446 0 +
5 1.43400 3 +
6 1.45411 2 +
7 1.46110 1 -
8 1.46514 1 -
9 1.59425 5 -
10 1.65940 4 +
11 1.66428 2 +
12 1.71780 1 -
13 1.73346 4 +
14 1.89482 4 +
15 1.90377 3 +
16 1.90591 6 +
17 1.92097 0 +
18 1.97248 2 +
19 2.03140 4 -
20 2.04100 5 +
21 2.05796 2 -
22 2.09559 6 +
23 2.11105 4 +
24 2.12864 7 -
25 2.14250 3 -
26 2.14635 2 +
27 2.14750 5 +
28 2.19406 6 +
29 2.20499 0 +
30 2.20885 2 +
31 2.21422 5 +
32 2.22804 4 +
33 2.27700 1 +
34 2.28441 1 -
35 2.31357 2 +
36 2.31850 2 +
37 2.32709 4 +
38 2.32762 3 +
39 2.33921 3 -
40 2.34400 3 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887
Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610
Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131
Sm-146 17.6964 1.9863 0.5792 0.5450 0.8159 5.5739
Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412
Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682
Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135
Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282
Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470
Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542
Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189
Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190
Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179
Nd-142 15.0000 2.0140 -1.2557 0.6895 0.7987 6.4278
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sm-149
--------------------------------------------------------
K0 = 1.660 E0 = 4.500 (MeV)
* E1: ER = 13.24 (MeV) EG = 3.61 (MeV) SIG = 123.35 (mb)
ER = 15.77 (MeV) EG = 5.05 (MeV) SIG = 246.70 (mb)
* M1: ER = 7.73 (MeV) EG = 4.00 (MeV) SIG = 1.04 (mb)
* E2: ER = 11.88 (MeV) EG = 4.32 (MeV) SIG = 3.55 (mb)
--------------------------------------------------------
References
1) Mizumoto, M. and Zhao, W.R.: JAERI-M 86-112, 168 (1986).
2) Zhao, W.R. and Mizumoto, M.: private communication (1986).
3) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B",
Academic Press (1984).
4) Georgiev, G., et al.: Nucl. Phys., A565, 643 (1993).
5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
6) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
13) Kalbach,C.: Phys. Rev. C33, 818 (1986).
14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).