62-Sm-149
62-Sm-149 JAEA+ EVAL-Nov09 N.Iwamoto,A.Zukeran
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6240
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The resolved resonance parameters were evaluated by
A.Zukeran.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 0.52 keV
Parameters of the lowest 2 levels were evaluated on the
basis of data measured by Akyuez et al./1/, Asami et al.
/2/ and Pattenden/3/. The data of Mizumoto/4/ were
adopted for other resonances. The J values were determined
according to Marshak/5/, Cauvin et al./6/, Karzhavina et
al./7/ and Becvar et al./8/ Radiation widths have been
measured for seven resonances and their average value of 62
meV was used as a recommended value.
For jendl-3, total spin J of some resonances was
tentatively estimated with a random number method. The
parameters of the 1st level were modified so as to reproduce
the thermal capture cross section and resonance integral
/9/.
In JENDL-4, the radiations widths for 25.26 - 263.2 eV were
replaced with those obtained by Georgiev et al./10/
Unresolved resonance region : 520.0 eV - 120.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /11/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /12/ and CCONE /13/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.0723e+04
Elastic 1.7884e+02
n,gamma 4.0544e+04 3.5174e+03
n,alpha 3.1173e-02
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /13/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /13/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /13/.
MT= 22 (n,na) cross section
Calculated with CCONE code /13/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /13/.
MT= 28 (n,np) cross section
Calculated with CCONE code /13/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /13/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /13/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /13/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /13/.
MT=102 Capture cross section
Calculated with CCONE code /13/.
MT=103 (n,p) cross section
Calculated with CCONE code /13/.
MT=104 (n,d) cross section
Calculated with CCONE code /13/.
MT=105 (n,t) cross section
Calculated with CCONE code /13/.
MT=106 (n,He3) cross section
Calculated with CCONE code /13/.
MT=107 (n,a) cross section
Calculated with CCONE code /13/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /13/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /13/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /13/.
MT= 22 (n,na) reaction
Calculated with CCONE code /13/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /13/.
MT= 28 (n,np) reaction
Calculated with CCONE code /13/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /13/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /13/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /13/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /13/.
MT=102 Capture reaction
Calculated with CCONE code /13/.
*****************************************************************
Nuclear Model Calculation with CCONE code /13/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,3,11,14 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./14/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./15/
deuteron omp: Lohr,J.M. and Haeberli,W./16/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./17/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./17/
alpha omp: McFadden,L. and Satchler,G.R./18/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/19/
* Global parametrization of Koning-Duijvestijn/20/
was used.
* Gamma emission channel/21/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/22/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/23/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/24/,/25/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sm-149
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 7/2 - *
1 0.02251 5/2 -
2 0.27708 5/2 -
3 0.28594 9/2 - *
4 0.35004 3/2 -
5 0.39909 1/2 -
6 0.52860 3/2 -
7 0.55837 5/2 -
8 0.59089 9/2 -
9 0.63646 7/2 -
10 0.65860 5/2 +
11 0.66405 11/2 - *
12 0.69700 3/2 -
13 0.70986 3/2 -
14 0.74755 13/2 - *
15 0.78523 5/2 -
16 0.78947 11/2 +
17 0.83041 9/2 -
18 0.83323 7/2 +
19 0.83559 7/2 -
20 0.87864 13/2 +
21 0.88194 7/2 -
22 0.92548 5/2 +
23 0.95278 5/2 +
24 0.96700 1/2 +
25 0.99460 11/2 +
26 1.01200 1/2 +
27 1.03900 5/2 -
28 1.04800 3/2 +
29 1.08300 1/2 +
30 1.11300 1/2 +
31 1.12300 1/2 +
32 1.13245 1/2 +
33 1.15400 1/2 +
34 1.17320 1/2 +
35 1.18100 1/2 +
36 1.18700 5/2 -
37 1.19272 13/2 +
38 1.19500 1/2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887
Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610
Sm-147 18.4207 0.9897 1.4097 0.5385 -0.5090 4.9131
Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264
Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412
Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682
Pm-146 17.5893 0.0000 1.5389 0.5962 -1.9822 4.7135
Pm-145 16.8637 0.9965 0.9449 0.5991 -0.6199 5.3282
Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010
Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470
Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542
Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189
Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190
Nd-143 17.7000 1.0035 -0.4179 0.5516 0.0353 4.4179
Nd-142 15.0000 2.0140 -1.2557 0.6895 0.7987 6.4278
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sm-150
--------------------------------------------------------
K0 = 1.660 E0 = 4.500 (MeV)
* E1: ER = 14.61 (MeV) EG = 5.97 (MeV) SIG = 312.00 (mb)
* M1: ER = 7.72 (MeV) EG = 4.00 (MeV) SIG = 1.64 (mb)
* E2: ER = 11.86 (MeV) EG = 4.31 (MeV) SIG = 3.54 (mb)
--------------------------------------------------------
References
1) Akyuez, OE.R., et al.: CNAEM-52 (1968).
2) Asami, T., et al.: J. Phys. Soc. Jpn., 26, 225 (1969).
3) Pattenden, N.J.: Nucl. Sci. Eng., 17, 371 (1963).
4) Mizumoto, M.: Nucl. Phys., A357, 90 (1981).
5) Marshak, H., et al.: Phys. Rev., 128, 1287 (1967).
6) Cauvin, B., et al.: "Proc. 3rd Conf. on Neutron Cross
Sections and Technol., Knoxville 1971", 785.
7) Karzhavina, E.N., et al. JINER-P3-6237 (1972).
8) Becvar, F., et al.: Nucl. Phys., A236, 173 (1974).
9) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B",
Academic Press (1984).
10) Georgiev, G., et al.: Nucl. Phys., A565, 643 (1993).
11) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
12) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
13) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
14) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
15) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
16) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
17) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
18) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
19) Kalbach,C.: Phys. Rev. C33, 818 (1986).
20) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
21) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
22) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
23) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
24) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
25) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).