62-Sm-150
62-Sm-150 JAEA+ EVAL-Nov09 N.Iwamoto,A.Zukeran
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6243
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The resolved resonance parameters were evaluated by
A.Zukeran.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 1.538 keV
Evaluation for JENDL-2 was made on the basis of the
experimental data by Eiland et al./1/ and by Anufriev et
al./2/ The average radiation width of 0.060 eV was
assumed. A negative resonance was added at -3.5 eV so as to
reproduce the capture cross section of 107+-9 barns and the
total cross section of 122+-12 barns/1/.
In JENDL-4, the data for 20.6 and 48.0 eV were taken from
the work of Popov et al./3/ The parameters for the
negative resonance were re-adjusted.
Unresolved resonance region : 1.538 keV - 150.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.0892e+02
Elastic 8.0289e+00
n,gamma 1.0090e+02 3.3100e+02
n,alpha 3.1028e-06
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,3,9 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./8/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./9/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
alpha omp: McFadden,L. and Satchler,G.R./11/
(+) omp parameters were modified.
2) Two-component exciton model/12/
* Global parametrization of Koning-Duijvestijn/13/
was used.
* Gamma emission channel/14/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/15/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/16/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/17/,/18/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sm-150
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.33386 2 + *
2 0.74038 0 +
3 0.77324 4 + *
4 1.04604 2 +
5 1.07126 3 -
6 1.16561 1 -
7 1.19373 2 +
8 1.25540 0 +
9 1.27876 6 + *
10 1.35753 5 -
11 1.41717 2 +
12 1.44899 4 +
13 1.50445 3 +
14 1.64252 4 +
15 1.65829 2 -
16 1.67270 5 -
17 1.67271 4 +
18 1.68400 3 -
19 1.71314 1 -
20 1.75956 3 -
21 1.76469 7 -
22 1.77330 5 -
23 1.78660 3 +
24 1.79400 2 +
25 1.81933 4 +
26 1.82172 4 +
27 1.82228 3 -
28 1.83328 2 +
29 1.83687 8 +
30 1.88330 2 +
31 1.92730 2 +
32 1.95057 3 -
33 1.96366 1 -
34 1.97033 4 +
35 1.97930 0 +
36 2.00550 2 +
37 2.02025 5 +
38 2.02453 4 +
39 2.03522 5 -
40 2.04410 0 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887
Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610
Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000
Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264
Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412
Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682
Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955
Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010
Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470
Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542
Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189
Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sm-151
--------------------------------------------------------
K0 = 1.660 E0 = 4.500 (MeV)
* E1: ER = 12.93 (MeV) EG = 3.45 (MeV) SIG = 125.25 (mb)
ER = 15.92 (MeV) EG = 5.14 (MeV) SIG = 250.51 (mb)
* M1: ER = 7.70 (MeV) EG = 4.00 (MeV) SIG = 1.06 (mb)
* E2: ER = 11.83 (MeV) EG = 4.30 (MeV) SIG = 3.53 (mb)
--------------------------------------------------------
References
1) Eiland, H.M., et al.: Nucl. Sci. Eng., 54, 286 (1974).
2) Anufriev, V.A., et al.: Proc. 4th All Union Conf. on Neutron
Physics, Kiev 1977, Vol.2, 263.
3) Popov, A.B., et al.: Yadernaya Fizika, 32, 603 (1980).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
11) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
12) Kalbach,C.: Phys. Rev. C33, 818 (1986).
13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).