62-Sm-151
62-Sm-151 JAEA+ EVAL-Nov09 N.Iwamoto,A.Zukeran,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6246
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The resolved resonance parameters were evaluated by
A.Zukeran,K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 0.2461 keV
In JENDL-3.3, neutron widths were obtained by averaging the
data of Pattenden/1/, Kirouac and Eiland/2/ and Anufriev
et al./3/ Radiation widths were taken from ref./2/ or
the average value of 0.065+-0.015 eV was adopted.
A negative resonance was added at -0.12 eV so as to
reproduce the thermal capture and total cross sections given
by Mughabghab/4/.
In JENDL-4, the radiation widths for 1 - 20 eV were replaced
with the ones obtained by Marrone et al./5/
Unresolved resonance region : 246.1 eV - 100.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /6/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /7/ and CCONE /8/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.5214e+04
Elastic 5.0386e+01
n,gamma 1.5164e+04 3.4403e+03
n,alpha 1.0482e-02
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /8/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /8/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /8/.
MT= 22 (n,na) cross section
Calculated with CCONE code /8/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /8/.
MT= 28 (n,np) cross section
Calculated with CCONE code /8/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /8/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /8/.
MT= 37 (n,4n) cross section
Calculated with CCONE code /8/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /8/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /8/.
MT=102 Capture cross section
Calculated with CCONE code /8/.
MT=103 (n,p) cross section
Calculated with CCONE code /8/.
MT=104 (n,d) cross section
Calculated with CCONE code /8/.
MT=105 (n,t) cross section
Calculated with CCONE code /8/.
MT=106 (n,He3) cross section
Calculated with CCONE code /8/.
MT=107 (n,a) cross section
Calculated with CCONE code /8/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /8/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /8/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /8/.
MT= 22 (n,na) reaction
Calculated with CCONE code /8/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /8/.
MT= 28 (n,np) reaction
Calculated with CCONE code /8/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /8/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /8/.
MT= 37 (n,4n) reaction
Calculated with CCONE code /8/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /8/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /8/.
MT=102 Capture reaction
Calculated with CCONE code /8/.
*****************************************************************
Nuclear Model Calculation with CCONE code /8/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,2,9,12,30 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./9/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./10/
deuteron omp: Lohr,J.M. and Haeberli,W./11/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
alpha omp: McFadden,L. and Satchler,G.R./13/
(+) omp parameters were modified.
2) Two-component exciton model/14/
* Global parametrization of Koning-Duijvestijn/15/
was used.
* Gamma emission channel/16/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/17/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/18/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/19/,/20/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sm-151
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 5/2 - *
1 0.00482 3/2 -
2 0.06583 7/2 - *
3 0.06970 5/2 -
4 0.09153 9/2 +
5 0.10483 3/2 -
6 0.14791 13/2 +
7 0.16775 5/2 +
8 0.16840 5/2 -
9 0.17538 9/2 - *
10 0.20899 7/2 -
11 0.22000 5/2 +
12 0.26113 11/2 - *
13 0.28495 3/2 -
14 0.29482 9/2 -
15 0.30262 7/2 -
16 0.30679 3/2 +
17 0.31385 3/2 -
18 0.31528 3/2 -
19 0.32394 7/2 +
20 0.34491 3/2 +
21 0.35565 1/2 +
22 0.35800 5/2 -
23 0.38320 17/2 +
24 0.39558 5/2 +
25 0.40550 1/2 -
26 0.41564 7/2 -
27 0.41910 11/2 +
28 0.42318 11/2 -
29 0.43750 5/2 +
30 0.44520 13/2 - *
31 0.44568 5/2 +
32 0.44858 3/2 -
33 0.47041 7/2 +
34 0.49034 7/2 -
35 0.50227 11/2 -
36 0.50233 1/2 +
37 0.50530 5/2 +
38 0.52115 3/2 +
39 0.53020 9/2 +
40 0.53181 13/2 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
Sm-149 19.2000 0.9831 2.9030 0.5042 -0.6887 4.8887
Sm-148 18.4000 1.9728 2.0339 0.5337 0.3686 5.9610
Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316
Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000
Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264
Pm-148 18.3000 0.0000 2.8623 0.4670 -1.0648 3.0412
Pm-147 17.0632 0.9897 2.3331 0.6101 -1.2455 5.9682
Nd-150 20.0000 1.9596 3.4363 0.5263 -0.3405 6.6204
Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955
Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010
Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470
Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542
Nd-145 18.5400 0.9965 1.1101 0.5235 -0.2928 4.6189
Nd-144 17.5000 2.0000 0.3419 0.6111 0.2496 6.6190
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sm-152
--------------------------------------------------------
K0 = 1.660 E0 = 4.500 (MeV)
* E1: ER = 12.38 (MeV) EG = 2.97 (MeV) SIG = 176.00 (mb)
ER = 15.74 (MeV) EG = 5.22 (MeV) SIG = 234.00 (mb)
* M1: ER = 7.68 (MeV) EG = 4.00 (MeV) SIG = 1.30 (mb)
* E2: ER = 11.80 (MeV) EG = 4.29 (MeV) SIG = 3.51 (mb)
--------------------------------------------------------
References
1) Pattenden, N.J.: Nucl. Sci. Eng., 17, 371 (1963).
2) Kirouac, G.J., Eiland, H.M.: Phys. Rev., C11, 895 (1975).
3) Anufriev, V.A., et al.: Proc. 4th All Union Conf. on Neutron
Physics, Kiev 1977, Vol. 2, 263.
4) Mughabghab, S.F.: "Neutron Cross Sections, Vol. I, Part B",
Academic Press (1984).
5) Marrone, S. et al.: Phys. Rev., C73, 034604 (2006).
6) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
7) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
8) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
9) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
10) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
11) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
12) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
13) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
14) Kalbach,C.: Phys. Rev. C33, 818 (1986).
15) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
16) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
17) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
18) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
19) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
20) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).