62-Sm-152
62-Sm-152 JAEA EVAL-Nov09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6249
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The resolved resonance parameters were evaluated by
N.Iwamoto.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 5.029 keV
Resonance parameters were taken from JENDL-2 which was
evaluated by Kikuchi et al./1/ as follows:
Parameters were adopted from Rahn et al./2/ For the
levels whose radiation width was not measured, the average
value of 0.065+-0.015 eV was assumed.
For JENDL-4.0 the resonance parameters of the first
resonance level were taken from Mughabghab /3/. A negative
resonance was added at -140 eV so as to reproduce the
capture and scattering cross sections at 0.0253 eV, which
were recommended by Mughabghab /3/. The scattering radius
was changed to 8.4 fm.
Unresolved resonance region : 5.029 keV - 200.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 2.0898e+02
Elastic 3.0776e+00
n,gamma 2.0590e+02 2.9781e+03
n,alpha 3.7387e-10
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,4,11 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./8/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./9/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
alpha omp: McFadden,L. and Satchler,G.R./11/
(+) omp parameters were modified.
2) Two-component exciton model/12/
* Global parametrization of Koning-Duijvestijn/13/
was used.
* Gamma emission channel/14/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/15/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/16/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/17/,/18/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sm-152
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.12178 2 + *
2 0.36648 4 + *
3 0.68470 0 +
4 0.70688 6 + *
5 0.81045 2 +
6 0.96335 1 -
7 1.02297 4 +
8 1.04111 3 -
9 1.08285 0 +
10 1.08588 2 +
11 1.12535 8 + *
12 1.22148 5 -
13 1.22600 2 +
14 1.23385 3 +
15 1.28994 1 +
16 1.29276 2 +
17 1.31050 6 +
18 1.37174 4 +
19 1.50561 7 -
20 1.51079 1 -
21 1.52979 2 -
22 1.55959 5 +
23 1.57943 3 -
24 1.60923 10 +
25 1.61278 5 -
26 1.64989 2 -
27 1.65880 0 +
28 1.66639 8 +
29 1.68057 1 -
30 1.68209 4 -
31 1.72820 6 +
32 1.73024 3 -
33 1.73600 0 +
34 1.75703 2 +
35 1.76420 5 -
36 1.76910 2 +
37 1.77624 1 -
38 1.80398 5 -
39 1.82119 4 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072
Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904
Sm-151 20.8000 0.9765 3.9732 0.5224 -1.6295 5.9141
Sm-150 19.2000 1.9596 3.2458 0.5078 0.1619 6.0033
Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071
Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316
Pm-150 17.9970 0.0000 4.0234 0.4210 -0.7878 2.5000
Pm-149 17.2625 0.9831 3.6138 0.5926 -1.4731 6.0264
Nd-151 19.8000 0.9765 3.4048 0.5128 -1.0731 5.3158
Nd-150 20.0000 1.9596 3.4363 0.5263 -0.3405 6.6204
Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955
Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010
Nd-147 19.7000 0.9897 2.4886 0.4934 -0.5694 4.7470
Nd-146 18.1900 1.9863 1.6792 0.5692 0.1138 6.4542
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sm-153
--------------------------------------------------------
K0 = 1.660 E0 = 4.500 (MeV)
* E1: ER = 12.55 (MeV) EG = 3.26 (MeV) SIG = 127.14 (mb)
ER = 16.14 (MeV) EG = 5.27 (MeV) SIG = 254.27 (mb)
* M1: ER = 7.67 (MeV) EG = 4.00 (MeV) SIG = 1.09 (mb)
* E2: ER = 11.78 (MeV) EG = 4.27 (MeV) SIG = 3.50 (mb)
--------------------------------------------------------
References
1) KIKUCHI,Y. ET AL.: JAERI-M 86-030 (1986).
2) RAHN,F., ET AL.: PHYS. REV., C6, 251 (1972).
3) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
11) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
12) Kalbach,C.: Phys. Rev. C33, 818 (1986).
13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
17) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
18) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).