62-Sm-154
62-Sm-154 JAEA EVAL-Nov09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6255
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 resolved and unresolved resonance parameters
RESOLVED RESONANCE REGION (MLBW FORMULA) : BELOW 3.0 KEV
RESONANCE PARAMETERS WERE TAKEN FROM JENDL-2 EVALUATED BY
KIKUCHI ET AL./1/ AND WERE MODIFIED FOR JENDL-3.
FOR JENDL-2, PARAMETERS WERE ADOPTED FROM RAHN ET AL./2/
FOR THE LEVELS WHOSE RADIATION WIDTH WAS NOT MEASURED, THE
AVERAGE VALUE OF 0.079+-0.013 EV WAS ASSUMED. A NEGATIVE
RESONANCE WAS ADDED AT -35 EV SO AS TO REPRODUCE THE CAPTURE
CROSS SECTION OF 5.5+-1.1 BARNS AT 0.0253 EV/3/.
FOR JENDL-3, THE RADIATION WIDTH OF THE NEGATIVE RESONANCE
WAS CHANGED FROM 0.079 EV TO 0.1266 EV AND THE SCATTERING
RADIUS FROM 8.34 FM TO 9.67 FM SO AS TO REPRODUCE WELL THE
THERMAL CROSS SECTIONS (CAPTURE = 8.4 B, SCATTERING = 11 B)
COMPILED BY MUGHABGHAB/4/.
Unresolved resonance region : 3.0 keV - 250.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /5/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /6/ and CCONE /7/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.9427e+01
Elastic 1.1032e+01
n,gamma 8.3951e+00 3.6490e+01
n,alpha 6.8088e-16
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /7/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /7/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /7/.
MT= 22 (n,na) cross section
Calculated with CCONE code /7/.
MT= 28 (n,np) cross section
Calculated with CCONE code /7/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /7/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /7/.
MT=102 Capture cross section
Calculated with CCONE code /7/.
MT=103 (n,p) cross section
Calculated with CCONE code /7/.
MT=104 (n,d) cross section
Calculated with CCONE code /7/.
MT=105 (n,t) cross section
Calculated with CCONE code /7/.
MT=106 (n,He3) cross section
Calculated with CCONE code /7/.
MT=107 (n,a) cross section
Calculated with CCONE code /7/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /7/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /7/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /7/.
MT= 22 (n,na) reaction
Calculated with CCONE code /7/.
MT= 28 (n,np) reaction
Calculated with CCONE code /7/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /7/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /7/.
MT=102 Capture reaction
Calculated with CCONE code /7/.
*****************************************************************
Nuclear Model Calculation with CCONE code /7/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,3,4 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./8/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./9/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./10/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
alpha omp: McFadden,L. and Satchler,G.R./12/
(+) omp parameters were modified.
2) Two-component exciton model/13/
* Global parametrization of Koning-Duijvestijn/14/
was used.
* Gamma emission channel/15/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/16/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/17/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/18/,/19/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sm-154
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.08198 2 + *
2 0.26679 4 + *
3 0.54373 6 + *
4 0.90264 8 + *
5 0.92140 1 -
6 1.01239 3 -
7 1.09933 0 +
8 1.10400 4 -
9 1.12000 4 -
10 1.17781 2 +
11 1.18065 5 -
12 1.20238 0 +
13 1.28636 2 +
14 1.29500 2 +
15 1.33280 10 +
16 1.33764 4 +
17 1.36500 3 -
18 1.37100 4 +
19 1.43100 7 -
20 1.44005 2 +
21 1.47213 4 +
22 1.47500 6 +
23 1.47571 1 -
24 1.51519 2 -
25 1.53926 3 +
26 1.57661 6 +
27 1.58455 3 -
28 1.61482 0 +
29 1.66190 4 -
30 1.66489 4 +
31 1.67383 0 +
32 1.70681 4 +
33 1.74100 8 +
34 1.75464 0 +
35 1.75589 0 +
36 1.76000 9 -
37 1.76440 0 +
38 1.77424 5 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sm-155 19.5000 0.9639 2.9414 0.5495 -1.3709 5.8007
Sm-154 18.5215 1.9340 3.2136 0.5576 -0.3117 6.6726
Sm-153 20.0000 0.9701 3.6781 0.5579 -1.8633 6.3072
Sm-152 19.7000 1.9467 3.6242 0.5066 -0.0488 6.1904
Pm-154 18.4033 0.0000 2.5027 0.3188 0.0149 1.0000
Pm-153 17.6600 0.9701 3.1546 0.5829 -1.3375 5.8693
Pm-152 18.2003 0.0000 3.4439 0.4590 -1.0726 3.0071
Pm-151 17.4614 0.9765 3.7662 0.5765 -1.3653 5.8316
Nd-153 19.0261 0.9701 2.6911 0.3086 0.9675 1.9701
Nd-152 18.3157 1.9467 3.0281 0.5483 -0.0707 6.4042
Nd-151 19.8000 0.9765 3.4048 0.5128 -1.0731 5.3158
Nd-150 20.0000 1.9596 3.4363 0.5263 -0.3405 6.6204
Nd-149 20.9000 0.9831 3.5199 0.4992 -1.1865 5.3955
Nd-148 21.1000 1.9728 2.8636 0.4784 0.2048 5.9010
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sm-155
--------------------------------------------------------
K0 = 1.660 E0 = 4.500 (MeV)
* E1: ER = 12.45 (MeV) EG = 3.21 (MeV) SIG = 129.00 (mb)
ER = 16.14 (MeV) EG = 5.27 (MeV) SIG = 257.99 (mb)
* M1: ER = 7.63 (MeV) EG = 4.00 (MeV) SIG = 1.10 (mb)
* E2: ER = 11.73 (MeV) EG = 4.25 (MeV) SIG = 3.47 (mb)
--------------------------------------------------------
References
1) KIKUCHI,Y. ET AL.: JAERI-M 86-030 (1986).
2) RAHN,F. ET AL.: PHYS. REV., C6, 251 (1972).
3) MUGHABGHAB,S.F. AND GARBER,D.I.: "NEUTRON CROSS SECTIONS,
VOL.1, RESONANCE PARAMETERS", BNL 325, 3RD ED., VOL. 1,
(1973).
4) MUGHABGHAB,S.F.: "NEUTRON CROSS SECTIONS, VOL. I, PART B",
ACADEMIC PRESS (1984).
5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
6) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
12) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
13) Kalbach,C.: Phys. Rev. C33, 818 (1986).
14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
18) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
19) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).