50-Sn-112
50-Sn-112 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5025
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 1.5 keV
Resonance parameters were based on Mughabghab et al./1/
Neutron orbital angular momentum l of some resonances was
estimated with a method of Bollinger and Thomas/2/.
Average radiation width was 110 meV/1/. Scattering radius
of 6.3 fm was assumed from the systematics of measured
values for neighboring nuclides. A negative resonance was
added so as to reproduce the thermal capture cross section
given by Mughabghab et al./1/
In JENDL-4, the parameters for the negative resonance were
adjusted so as to reproduce the thermal capture cross
section recommended by Mughabghab./3/
Unresolved resonance region : 1.5 keV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 5.4700e+00
Elastic 4.6093e+00
n,gamma 8.6071e-01 3.0609e+01
n,alpha 1.0294e-06
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 44 (n,n2p) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MT=108 (n,2a) cross section
Calculated with CCONE code /6/.
MT=111 (n,2p) cross section
Calculated with CCONE code /6/.
MT=112 (n,pa) cross section
Calculated with CCONE code /6/.
MT=115 (n,pd) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 44 (n,n2p) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,5 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Kunieda,S. et al./7/
deuteron omp: Lohr,J.M. and Haeberli,W./8/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
alpha omp: Huizenga,J.R. and Igo,G./10/
(+) omp parameters were modified.
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/14/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/15/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/16/,/17/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sn-112
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 1.25685 2 + *
2 2.15109 2 +
3 2.19090 0 +
4 2.24762 4 +
5 2.35453 3 - *
6 2.47620 2 +
7 2.52105 4 +
8 2.54930 6 +
9 2.55660 1 -
10 2.61800 0 +
11 2.72156 2 +
12 2.75619 2 +
13 2.78392 4 +
14 2.86000 3 +
15 2.91340 4 +
16 2.91771 3 +
17 2.92678 6 +
18 2.94596 4 +
19 2.96700 2 +
20 2.98900 0 +
21 3.07887 0 +
22 3.09307 2 +
23 3.11800 0 +
24 3.13700 5 -
25 3.14941 4 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sn-113 15.4000 1.1289 0.7517 0.6142 -0.2165 5.1009
Sn-112 14.1265 2.2678 0.0327 0.6962 0.7947 6.7965
Sn-111 13.0000 1.1390 -0.0310 0.7930 -0.8028 6.6686
Sn-110 13.9128 2.2883 -0.9402 0.7805 0.4433 7.8599
In-112 14.0642 0.0000 1.6631 0.6172 -1.2351 3.7389
In-111 13.4200 1.1390 1.2797 0.6828 -0.3713 5.4885
In-110 13.8530 0.0000 0.8218 0.6504 -1.2221 3.9107
In-109 13.2140 1.1494 0.2127 0.7178 -0.2493 5.6123
Cd-111 15.6000 1.1390 2.3788 0.6387 -1.0720 6.0644
Cd-110 13.9128 2.2883 1.7183 0.7231 -0.0110 7.6874
Cd-109 16.0000 1.1494 1.5974 0.6243 -0.7773 5.7804
Cd-108 13.6986 2.3094 0.6850 0.7416 0.2888 7.5998
Cd-107 15.7000 1.1601 0.3491 0.6866 -0.9318 6.4069
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sn-113
--------------------------------------------------------
* E1: ER = 15.82 (MeV) EG = 5.07 (MeV) SIG = 251.83 (mb)
* M1: ER = 8.48 (MeV) EG = 4.00 (MeV) SIG = 0.69 (mb)
* E2: ER = 13.03 (MeV) EG = 4.75 (MeV) SIG = 2.77 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968).
3) Mughabghab, S.F.: "Atlas of Neutron Resonances", Elsevier
(2006).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
10) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
11) Kalbach,C.: Phys. Rev. C33, 818 (1986).
12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).