50-Sn-114
50-Sn-114 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5031
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
RESOLVED RESONANCE REGION (MLBW FORMULA) : BELOW 2.5 KEV
RESONANCE PARAMETERS WERE MAINLY BASED ON MUGHABGHAB ET
AL./1/ THE LEVELS WHOSE NEUTRON WIDTH WAS UNKNOWN WERE
ASSUMED TO BE P-WAVE RESONANCES, AND A REDUCED NEUTRON
WIDTH OF 0.082 EV WAS TENTATIVELY GIVEN FOR THOSE LEVELS.
AVERAGE RADIATION WIDTH OF 0.090 EV AND SCATTERING RADIUS
OF 6.3 FM WERE TAKEN FROM MUGHABGHAB ET AL.
Unresolved resonance region : 2.5 keV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.6916e+00
Elastic 4.5663e+00
n,gamma 1.2531e-01 6.4625e+00
n,alpha 6.7582e-11
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MT=111 (n,2p) cross section
Calculated with CCONE code /4/.
MT=112 (n,pa) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,6 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/ (+)
proton omp: Kunieda,S. et al./5/
deuteron omp: Lohr,J.M. and Haeberli,W./6/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
alpha omp: Huizenga,J.R. and Igo,G./8/
(+) omp parameters were modified.
2) Two-component exciton model/9/
* Global parametrization of Koning-Duijvestijn/10/
was used.
* Gamma emission channel/11/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/12/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/13/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/14/,/15/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sn-114
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 1.29991 2 + *
2 1.95327 0 +
3 2.15628 0 +
4 2.18760 4 +
5 2.23895 2 +
6 2.27499 3 - *
7 2.42167 0 +
8 2.45407 2 +
9 2.51476 3 +
10 2.57600 2 +
11 2.61446 4 +
12 2.73840 3 -
13 2.75970 4 -
14 2.76536 4 +
15 2.81515 5 -
16 2.85981 4 +
17 2.90512 4 +
18 2.91573 2 +
19 2.94343 2 +
20 3.02500 3 +
21 3.02529 0 +
22 3.02809 3 +
23 3.07140 4 -
24 3.08737 7 -
25 3.10010 4 -
26 3.10710 5 +
27 3.14979 6 +
28 3.18613 2 +
29 3.18892 6 +
30 3.19039 8 -
31 3.20400 0 +
32 3.20761 2 +
33 3.21176 2 +
34 3.22600 2 +
35 3.24205 5 -
36 3.24439 6 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sn-115 14.7000 1.1190 1.0063 0.5584 0.3775 4.0538
Sn-114 14.3397 2.2478 0.6810 0.6658 0.7718 6.5831
Sn-113 15.4000 1.1289 0.7517 0.6142 -0.2165 5.1009
Sn-112 14.1265 2.2678 0.0327 0.6962 0.7947 6.7965
In-114 13.8000 0.0000 2.2509 0.5975 -1.1306 3.4976
In-113 13.6257 1.1289 2.0526 0.6704 -0.5799 5.6037
In-112 14.0642 0.0000 1.6631 0.6172 -1.2351 3.7389
In-111 13.4200 1.1390 1.2797 0.6828 -0.3713 5.4885
Cd-113 15.9000 1.1289 2.9350 0.6265 -1.2162 6.1086
Cd-112 15.1000 2.2678 2.4135 0.6741 -0.1957 7.5999
Cd-111 15.6000 1.1390 2.3788 0.6387 -1.0720 6.0644
Cd-110 13.9128 2.2883 1.7183 0.7231 -0.0110 7.6874
Cd-109 16.0000 1.1494 1.5974 0.6243 -0.7773 5.7804
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sn-115
--------------------------------------------------------
* E1: ER = 15.75 (MeV) EG = 5.03 (MeV) SIG = 257.32 (mb)
* M1: ER = 8.43 (MeV) EG = 4.00 (MeV) SIG = 0.68 (mb)
* E2: ER = 12.96 (MeV) EG = 4.73 (MeV) SIG = 2.74 (mb)
--------------------------------------------------------
References
1) MUGHABGHAB, S.F. ET AL.: "NEUTRON CROSS SECTIONS, VOL. I,
PART A", ACADEMIC PRESS (1981).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
9) Kalbach,C.: Phys. Rev. C33, 818 (1986).
10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).