50-Sn-115
50-Sn-115 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5034
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 0.95 keV
Resonance parameters were based on Mughabghab et al./1/
Total spin j of some resonances was tentatively estimated
with a random number method. Averaged radiation width of
85 meV and scattering radius of 6.3 fm were assumed from the
systematics of measured values for neighboring nuclides.
A negative resonance was added so as to reproduce thermal
capture crosssection given by Mughabghab et al.
In JENDL-4, the energy of the negative resonance was
changed to -7.65 eV so as to reproduce the thermal capture
cross section newly recommended by Mughabghab /2/.
Unresolved resonance region : 950 eV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /3/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /4/ and CCONE /5/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 6.8757e+01
Elastic 1.0533e+01
n,gamma 5.8224e+01 1.9845e+01
n,alpha 1.9670e-04
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /5/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /5/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /5/.
MT= 22 (n,na) cross section
Calculated with CCONE code /5/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /5/.
MT= 28 (n,np) cross section
Calculated with CCONE code /5/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /5/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /5/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /5/.
MT=102 Capture cross section
Calculated with CCONE code /5/.
MT=103 (n,p) cross section
Calculated with CCONE code /5/.
MT=104 (n,d) cross section
Calculated with CCONE code /5/.
MT=105 (n,t) cross section
Calculated with CCONE code /5/.
MT=106 (n,He3) cross section
Calculated with CCONE code /5/.
MT=107 (n,a) cross section
Calculated with CCONE code /5/.
MT=111 (n,2p) cross section
Calculated with CCONE code /5/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /5/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /5/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /5/.
MT= 22 (n,na) reaction
Calculated with CCONE code /5/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /5/.
MT= 28 (n,np) reaction
Calculated with CCONE code /5/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /5/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /5/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /5/.
MT=102 Capture reaction
Calculated with CCONE code /5/.
*****************************************************************
Nuclear Model Calculation with CCONE code /5/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,5 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./6/ (+)
proton omp: Kunieda,S. et al./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: Huizenga,J.R. and Igo,G./9/
(+) omp parameters were modified.
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sn-115
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 1/2 + *
1 0.49733 3/2 +
2 0.61281 7/2 +
3 0.71364 11/2 -
4 0.98656 5/2 +
5 1.28028 3/2 + *
6 1.41690 5/2 +
7 1.63376 3/2 +
8 1.64352 9/2 +
9 1.64373 7/2 -
10 1.73406 5/2 +
11 1.78592 9/2 -
12 1.80500 11/2 +
13 1.82493 5/2 +
14 1.85740 7/2 +
15 1.94576 13/2 -
16 1.97400 1/2 +
17 1.99390 5/2 +
18 1.99653 11/2 +
19 2.02548 15/2 -
20 2.06015 5/2 +
21 2.07694 1/2 +
22 2.08427 9/2 +
23 2.15577 7/2 +
24 2.16476 1/2 +
25 2.19316 1/2 +
26 2.19660 1/2 +
27 2.20748 5/2 +
28 2.23027 1/2 +
29 2.26500 1/2 +
30 2.30200 1/2 +
31 2.31382 1/2 +
32 2.34743 11/2 -
33 2.35216 1/2 +
34 2.36520 1/2 +
35 2.37100 1/2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sn-116 14.5525 2.2283 1.0766 0.6163 1.0296 5.9849
Sn-115 14.7000 1.1190 1.0063 0.5584 0.3775 4.0538
Sn-114 14.3397 2.2478 0.6810 0.6658 0.7718 6.5831
Sn-113 15.4000 1.1289 0.7517 0.6142 -0.2165 5.1009
In-115 13.8308 1.1190 2.4621 0.6294 -0.3710 5.1585
In-114 13.8000 0.0000 2.2509 0.5975 -1.1306 3.4976
In-113 13.6257 1.1289 2.0526 0.6704 -0.5799 5.6037
In-112 14.0642 0.0000 1.6631 0.6172 -1.2351 3.7389
Cd-114 15.2000 2.2478 2.7414 0.6005 0.5136 6.4627
Cd-113 15.9000 1.1289 2.9350 0.6265 -1.2162 6.1086
Cd-112 15.1000 2.2678 2.4135 0.6741 -0.1957 7.5999
Cd-111 15.6000 1.1390 2.3788 0.6387 -1.0720 6.0644
Cd-110 13.9128 2.2883 1.7183 0.7231 -0.0110 7.6874
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sn-116
--------------------------------------------------------
* E1: ER = 15.56 (MeV) EG = 5.08 (MeV) SIG = 271.00 (mb)
* M1: ER = 8.41 (MeV) EG = 4.00 (MeV) SIG = 0.78 (mb)
* E2: ER = 12.92 (MeV) EG = 4.72 (MeV) SIG = 2.72 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) Mughabghab, S.F.: "Atlas of Neutron Resonances", Elsevier
(2006).
3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
4) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).