50-Sn-116
50-Sn-116 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5037
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula): below 32.8 keV
The parameters are based on the work of Koehler et al./1/
A value of 6.32 fm was used for R.
Unresolved resonance region : 32.8 keV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.6469e+00
Elastic 4.5218e+00
n,gamma 1.2515e-01 1.2175e+01
n,alpha 2.1168e-16
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,6 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/ (+)
proton omp: Kunieda,S. et al./5/
deuteron omp: Lohr,J.M. and Haeberli,W./6/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
alpha omp: Huizenga,J.R. and Igo,G./8/
(+) omp parameters were modified.
2) Two-component exciton model/9/
* Global parametrization of Koning-Duijvestijn/10/
was used.
* Gamma emission channel/11/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/12/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/13/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/14/,/15/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sn-116
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 1.29356 2 + *
2 1.75686 0 +
3 2.02748 0 +
4 2.11232 2 +
5 2.22538 2 +
6 2.26616 3 - *
7 2.36598 5 -
8 2.39088 4 +
9 2.52920 4 +
10 2.54571 0 +
11 2.58556 1 +
12 2.65044 2 +
13 2.77333 6 -
14 2.79055 0 +
15 2.80128 4 +
16 2.84382 2 +
17 2.90885 7 -
18 2.96003 2 +
19 2.99627 3 +
20 3.01644 6 -
21 3.03270 6 +
22 3.04640 4 +
23 3.08863 2 +
24 3.09693 4 +
25 3.10518 5 -
26 3.15773 3 -
27 3.17968 3 +
28 3.18400 3 -
29 3.19432 0 +
30 3.21000 7 -
31 3.22745 2 +
32 3.22795 8 -
33 3.22806 2 +
34 3.23602 0 +
35 3.25767 4 -
36 3.27760 6 +
37 3.28899 1 -
38 3.30900 6 -
39 3.31499 3 +
40 3.33378 1 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sn-117 15.0000 1.1094 1.4418 0.5905 -0.0864 4.7453
Sn-116 14.5525 2.2283 1.0766 0.6163 1.0296 5.9849
Sn-115 14.7000 1.1190 1.0063 0.5584 0.3775 4.0538
Sn-114 14.3397 2.2478 0.6810 0.6658 0.7718 6.5831
In-116 14.8000 0.0000 2.5937 0.5594 -1.1570 3.3948
In-115 13.8308 1.1190 2.4621 0.6294 -0.3710 5.1585
In-114 13.8000 0.0000 2.2509 0.5975 -1.1306 3.4976
In-113 13.6257 1.1289 2.0526 0.6704 -0.5799 5.6037
Cd-115 16.4000 1.1190 3.1141 0.5877 -0.9615 5.6632
Cd-114 15.2000 2.2478 2.7414 0.6005 0.5136 6.4627
Cd-113 15.9000 1.1289 2.9350 0.6265 -1.2162 6.1086
Cd-112 15.1000 2.2678 2.4135 0.6741 -0.1957 7.5999
Cd-111 15.6000 1.1390 2.3788 0.6387 -1.0720 6.0644
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sn-117
--------------------------------------------------------
* E1: ER = 15.64 (MeV) EG = 5.04 (MeV) SIG = 259.00 (mb)
ER = 6.40 (MeV) EG = 1.80 (MeV) SIG = 1.50 (mb)
* M1: ER = 8.38 (MeV) EG = 4.00 (MeV) SIG = 1.09 (mb)
* E2: ER = 12.88 (MeV) EG = 4.71 (MeV) SIG = 2.70 (mb)
--------------------------------------------------------
References
1) Koehler, P.E., et al.: Phys. Rev., C64, 065802 (2001).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
8) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
9) Kalbach,C.: Phys. Rev. C33, 818 (1986).
10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
14) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
15) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).