50-Sn-117
50-Sn-117 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5040
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 2.35 keV
In JENDL-3.3, resonance parameters were mainly based on
Mughabghab et al./1/ Data measured by Alfimenkov et al.
/2/ were also considered. Total spin j of some resonances
was tentatively estimated with a random number method.
Neutron orbital angular momentum l of some resonances was
estimated with a method of Bollinger and Thomas/3/.
Averaged radiation width of 74 meV was deduced and applied
to the levels whose radiation width was unknown. Scattering
radius of 6.1 fm was assumed from the systematics of
measured values for neighboring nuclides. A negative
resonance was added so as to reproduce the thermal capture
and scattering cross sections given by Mughabghab et al.
In JENDL-4, the data below 1488.5 eV were replaced with the
ones obtained by Smith et al./4/ Some of the J values are
based on the work of Georigiev et al./5/ The remaining
unknow J values were estimated by a random number method.
The parameters for a negative resonance were adjusted so as
to reproduce the thermal capture cross section recommended
by Mughabghab /6/.
Unresolved resonance region : 2.35 keV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /7/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /8/ and CCONE /9/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 5.9238e+00
Elastic 4.8434e+00
n,gamma 1.0804e+00 1.7943e+01
n,alpha 3.2060e-08
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /9/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /9/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /9/.
MT= 22 (n,na) cross section
Calculated with CCONE code /9/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /9/.
MT= 28 (n,np) cross section
Calculated with CCONE code /9/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /9/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /9/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /9/.
MT=102 Capture cross section
Calculated with CCONE code /9/.
MT=103 (n,p) cross section
Calculated with CCONE code /9/.
MT=104 (n,d) cross section
Calculated with CCONE code /9/.
MT=105 (n,t) cross section
Calculated with CCONE code /9/.
MT=106 (n,He3) cross section
Calculated with CCONE code /9/.
MT=107 (n,a) cross section
Calculated with CCONE code /9/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /9/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /9/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /9/.
MT= 22 (n,na) reaction
Calculated with CCONE code /9/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /9/.
MT= 28 (n,np) reaction
Calculated with CCONE code /9/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /9/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /9/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /9/.
MT=102 Capture reaction
Calculated with CCONE code /9/.
*****************************************************************
Nuclear Model Calculation with CCONE code /9/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,4 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./10/ (+)
proton omp: Kunieda,S. et al./10/
deuteron omp: Lohr,J.M. and Haeberli,W./11/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
alpha omp: Huizenga,J.R. and Igo,G./13/
(+) omp parameters were modified.
2) Two-component exciton model/14/
* Global parametrization of Koning-Duijvestijn/15/
was used.
* Gamma emission channel/16/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/17/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/18/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/19/,/20/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sn-117
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 1/2 + *
1 0.15856 3/2 +
2 0.31458 11/2 -
3 0.71154 7/2 +
4 1.00453 3/2 + *
5 1.01992 5/2 +
6 1.17970 5/2 +
7 1.30430 7/2 -
8 1.44620 5/2 +
9 1.46860 5/2 +
10 1.49680 5/2 +
11 1.51010 5/2 +
12 1.53000 3/2 +
13 1.57825 3/2 +
14 1.58800 11/2 -
15 1.58900 5/2 +
16 1.59310 15/2 -
17 1.62540 13/2 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sn-118 14.7649 2.2094 1.1802 0.6386 0.7048 6.4391
Sn-117 15.0000 1.1094 1.4418 0.5905 -0.0864 4.7453
Sn-116 14.5525 2.2283 1.0766 0.6163 1.0296 5.9849
Sn-115 14.7000 1.1190 1.0063 0.5584 0.3775 4.0538
In-117 14.0356 1.1094 2.5136 0.6228 -0.3934 5.1460
In-116 14.8000 0.0000 2.5937 0.5594 -1.1570 3.3948
In-115 13.8308 1.1190 2.4621 0.6294 -0.3710 5.1585
In-114 13.8000 0.0000 2.2509 0.5975 -1.1306 3.4976
Cd-116 14.5525 2.2283 2.7100 0.6353 0.3516 6.7335
Cd-115 16.4000 1.1190 3.1141 0.5877 -0.9615 5.6632
Cd-114 15.2000 2.2478 2.7414 0.6005 0.5136 6.4627
Cd-113 15.9000 1.1289 2.9350 0.6265 -1.2162 6.1086
Cd-112 15.1000 2.2678 2.4135 0.6741 -0.1957 7.5999
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sn-118
--------------------------------------------------------
* E1: ER = 15.44 (MeV) EG = 4.86 (MeV) SIG = 279.00 (mb)
ER = 6.20 (MeV) EG = 1.90 (MeV) SIG = 2.90 (mb)
* M1: ER = 8.36 (MeV) EG = 4.00 (MeV) SIG = 1.40 (mb)
* E2: ER = 12.84 (MeV) EG = 4.69 (MeV) SIG = 2.69 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) Alfimenkov, V.P. et al.: Nucl. Phys., A398, 93 (1983).
3) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968).
4) Smith, D.A. et al.: Phys. Rev., C59, 2836 (1999).
5) Georgiev, G.P. et al.: YK-1996, p.64 (1996).
6) Mughabghab, S.F.: "Atlas of Neutron Resonances", Elsevier
(2006).
7) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
8) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
9) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
10) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
11) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
12) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
13) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
14) Kalbach,C.: Phys. Rev. C33, 818 (1986).
15) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
16) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
17) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
18) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
19) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
20) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).