50-Sn-118
50-Sn-118 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5043
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 15.0 keV
In JENDL-3.3, resonance parameters and scattering radius
were based on Mughabghab et al./1/ The levels whose
neutron width was unknown were assumed to be p-wave
resonances, and a reduced neutron width of 250 meV was
tentatively given for these levels. Neutron orbital angular
momentum L of some resonances was estimated with a method of
Bollinger and Thomas/2/. Average radiation width was
assumed to be 85 meV according to the systematics from the
neighboring nuclides. A negative resonance was added so as
to reproduce the thermal capture and scattering cross
sections given by Mughabghab et al.
In JENDL-4, the parameters were replaced with the ones
obtained by Wisshak et al./3/ in the region from 2.9 to 20 k
The values of unknown L were estimated by considering the
magnitude of g*Gamma_n. The J values were estimated by a
random number method.
Unresolved resonance region : 15.0 keV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.4453e+00
Elastic 4.2298e+00
n,gamma 2.1555e-01 5.2793e+00
n,alpha 9.8294e-26
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,8 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Kunieda,S. et al./7/
deuteron omp: Lohr,J.M. and Haeberli,W./8/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
alpha omp: Huizenga,J.R. and Igo,G./10/
(+) omp parameters were modified.
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/14/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/15/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/16/,/17/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sn-118
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 1.22967 2 + *
2 1.75831 0 +
3 2.04288 2 +
4 2.05691 0 +
5 2.12000 2 +
6 2.28034 4 +
7 2.32123 5 -
8 2.32485 3 - *
9 2.32802 2 +
10 2.40322 2 +
11 2.40800 4 +
12 2.48887 4 +
13 2.49688 0 +
14 2.53000 5 -
15 2.57491 7 -
16 2.57700 2 +
17 2.67735 2 +
18 2.72500 2 +
19 2.73379 4 +
20 2.73801 1 +
21 2.77394 4 -
22 2.81700 6 -
23 2.81717 3 -
24 2.87870 5 -
25 2.88900 8 +
26 2.90387 2 +
27 2.92972 1 +
28 2.93400 2 +
29 2.96344 4 +
30 2.97200 4 +
31 2.99100 3 +
32 2.99945 6 +
33 3.01521 2 -
34 3.02000 0 +
35 3.04835 4 -
36 3.05216 7 +
37 3.05722 2 +
38 3.08921 0 +
39 3.10806 0 +
40 3.13748 0 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sn-119 15.8000 1.1000 1.4670 0.5796 -0.2200 4.8655
Sn-118 14.7649 2.2094 1.1802 0.6386 0.7048 6.4391
Sn-117 15.0000 1.1094 1.4418 0.5905 -0.0864 4.7453
Sn-116 14.5525 2.2283 1.0766 0.6163 1.0296 5.9849
In-118 14.6950 0.0000 2.5427 0.5650 -1.1604 3.4261
In-117 14.0356 1.1094 2.5136 0.6228 -0.3934 5.1460
In-116 14.8000 0.0000 2.5937 0.5594 -1.1570 3.3948
In-115 13.8308 1.1190 2.4621 0.6294 -0.3710 5.1585
Cd-117 16.7000 1.1094 2.9235 0.6001 -1.1587 5.9328
Cd-116 14.5525 2.2283 2.7100 0.6353 0.3516 6.7335
Cd-115 16.4000 1.1190 3.1141 0.5877 -0.9615 5.6632
Cd-114 15.2000 2.2478 2.7414 0.6005 0.5136 6.4627
Cd-113 15.9000 1.1289 2.9350 0.6265 -1.2162 6.1086
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sn-119
--------------------------------------------------------
* E1: ER = 15.53 (MeV) EG = 4.81 (MeV) SIG = 253.00 (mb)
ER = 6.40 (MeV) EG = 1.80 (MeV) SIG = 1.50 (mb)
* M1: ER = 8.34 (MeV) EG = 4.00 (MeV) SIG = 1.00 (mb)
* E2: ER = 12.81 (MeV) EG = 4.68 (MeV) SIG = 2.67 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968).
3) Wisshak,K et al.: Phys. Rev., C54, 2732 (1996).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
10) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
11) Kalbach,C.: Phys. Rev. C33, 818 (1986).
12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).