50-Sn-119
50-Sn-119 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5046
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 1.3 keV
In JENDL-3.3, resonance parameters were based on Mughabghab
et al./1/ Total spin J of some resonances was tentatively
estimated with a random number method. Neutron orbital
angular momentum L of some resonances was estimated with a
method of Bollinger and Thomas/2/. Average radiation
width of 90 meV and scattering radius of 6.0 fm were assumed
from the systematics of measured values for neighboring
nuclides. A negative resonance was added so as to reproduce
the thermal capture and scattering cross sections given by
Mughabghab et al.
In JENDL-4, the values of J and L were reassigned on the
basis of the work done by Georgiev et al./3/ Radiation
widths of some levels were taken from the same literature
/3/.
Unresolved resonance region : 1.3 keV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 6.8704e+00
Elastic 4.6943e+00
n,gamma 2.1761e+00 5.5770e+00
n,alpha 8.5362e-11
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,4 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Kunieda,S. et al./7/
deuteron omp: Lohr,J.M. and Haeberli,W./8/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
alpha omp: Huizenga,J.R. and Igo,G./10/
(+) omp parameters were modified.
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/14/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/15/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/16/,/17/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sn-119
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 1/2 + *
1 0.02387 3/2 +
2 0.08953 11/2 -
3 0.78701 7/2 +
4 0.92051 3/2 + *
5 0.92139 5/2 +
6 1.06000 5/2 +
7 1.06240 7/2 -
8 1.08944 5/2 +
9 1.18773 5/2 +
10 1.21000 11/2 -
11 1.24971 1/2 +
12 1.30440 13/2 -
13 1.30930 15/2 -
14 1.35480 5/2 +
15 1.37880 13/2 -
16 1.39000 11/2 -
17 1.51000 3/2 -
18 1.55440 5/2 +
19 1.56200 3/2 +
20 1.57180 1/2 +
21 1.59000 5/2 +
22 1.61710 5/2 -
23 1.63300 3/2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sn-120 14.7000 2.1909 0.8820 0.6695 0.4967 6.8161
Sn-119 15.8000 1.1000 1.4670 0.5796 -0.2200 4.8655
Sn-118 14.7649 2.2094 1.1802 0.6386 0.7048 6.4391
Sn-117 15.0000 1.1094 1.4418 0.5905 -0.0864 4.7453
In-119 14.2400 1.1000 2.1477 0.6266 -0.3980 5.1833
In-118 14.6950 0.0000 2.5427 0.5650 -1.1604 3.4261
In-117 14.0356 1.1094 2.5136 0.6228 -0.3934 5.1460
In-116 14.8000 0.0000 2.5937 0.5594 -1.1570 3.3948
Cd-118 14.7649 2.2094 2.3367 0.6412 0.3136 6.8030
Cd-117 16.7000 1.1094 2.9235 0.6001 -1.1587 5.9328
Cd-116 14.5525 2.2283 2.7100 0.6353 0.3516 6.7335
Cd-115 16.4000 1.1190 3.1141 0.5877 -0.9615 5.6632
Cd-114 15.2000 2.2478 2.7414 0.6005 0.5136 6.4627
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sn-120
--------------------------------------------------------
* E1: ER = 15.37 (MeV) EG = 5.10 (MeV) SIG = 285.00 (mb)
ER = 6.20 (MeV) EG = 1.30 (MeV) SIG = 4.60 (mb)
* M1: ER = 8.31 (MeV) EG = 4.00 (MeV) SIG = 1.59 (mb)
* E2: ER = 12.77 (MeV) EG = 4.67 (MeV) SIG = 2.66 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968).
3) Georgiev, G.P. et al.: 94 Gatlinburg, p.299 (1994).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
10) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
11) Kalbach,C.: Phys. Rev. C33, 818 (1986).
12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).