50-Sn-123
50-Sn-123 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5058
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonances
No resolved resonance parameters
Unresolved resonance region : 50.0 eV - 150 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /1/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /2/ and CCONE /3/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 7.8426e+00
Elastic 4.8201e+00
n,gamma 3.0012e+00 1.5368e+01
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /3/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /3/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /3/.
MT= 22 (n,na) cross section
Calculated with CCONE code /3/.
MT= 28 (n,np) cross section
Calculated with CCONE code /3/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /3/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /3/.
MT=102 Capture cross section
Calculated with CCONE code /3/.
MT=103 (n,p) cross section
Calculated with CCONE code /3/.
MT=104 (n,d) cross section
Calculated with CCONE code /3/.
MT=105 (n,t) cross section
Calculated with CCONE code /3/.
MT=106 (n,He3) cross section
Calculated with CCONE code /3/.
MT=107 (n,a) cross section
Calculated with CCONE code /3/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /3/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /3/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /3/.
MT= 22 (n,na) reaction
Calculated with CCONE code /3/.
MT= 28 (n,np) reaction
Calculated with CCONE code /3/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /3/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /3/.
MT=102 Capture reaction
Calculated with CCONE code /3/.
*****************************************************************
Nuclear Model Calculation with CCONE code /3/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* optical model potential
neutron omp: Kunieda,S. et al./4/ (+)
proton omp: Kunieda,S. et al./4/
deuteron omp: Lohr,J.M. and Haeberli,W./5/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./6/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./6/
alpha omp: Huizenga,J.R. and Igo,G./7/
(+) omp parameters were modified.
2) Two-component exciton model/8/
* Global parametrization of Koning-Duijvestijn/9/
was used.
* Gamma emission channel/10/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/11/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/12/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/13/,/14/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sn-123
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 11/2 -
1 0.02460 3/2 +
2 0.15040 1/2 +
3 0.61881 9/2 -
4 0.87020 3/2 +
5 0.91980 3/2 +
6 0.93140 7/2 -
7 1.04430 7/2 +
8 1.07210 3/2 +
9 1.10700 15/2 -
10 1.10900 9/2 +
11 1.13630 7/2 +
12 1.15500 7/2 +
13 1.19440 5/2 +
14 1.21700 13/2 -
15 1.30100 5/2 +
-------------------
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sn-124 15.3994 2.1553 -1.0033 0.7260 0.3147 7.5454
Sn-123 15.9572 1.0820 -0.0224 0.6542 -0.5670 5.7354
Sn-122 15.1883 2.1729 0.1587 0.6646 0.6099 6.7179
Sn-121 14.9000 1.0909 0.9681 0.6514 -0.5137 5.5290
In-123 14.6475 1.0820 0.1996 0.6115 0.1625 4.5397
In-122 15.1132 0.0000 0.9721 0.6133 -1.2958 3.9041
In-121 14.4439 1.0909 1.3854 0.6275 -0.2553 5.0642
In-120 14.9043 0.0000 1.9246 0.6079 -1.4610 4.0000
Cd-122 15.1883 2.1729 0.5773 0.6134 0.9712 5.9920
Cd-121 15.7486 1.0909 1.5385 0.6783 -1.3360 6.5598
Cd-120 14.9768 2.1909 1.6826 0.6507 0.3296 6.8575
Cd-119 15.5394 1.1000 2.5578 0.6443 -1.1874 6.1408
Cd-118 14.7649 2.2094 2.3367 0.6412 0.3136 6.8030
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sn-124
--------------------------------------------------------
* E1: ER = 15.28 (MeV) EG = 4.80 (MeV) SIG = 276.00 (mb)
* M1: ER = 8.22 (MeV) EG = 4.00 (MeV) SIG = 0.68 (mb)
* E2: ER = 12.63 (MeV) EG = 4.62 (MeV) SIG = 2.60 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
5) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
6) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
7) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
8) Kalbach,C.: Phys. Rev. C33, 818 (1986).
9) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
10) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
11) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
12) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
13) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
14) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).