50-Sn-124
50-Sn-124 JAEA EVAL-Dec09 N.Iwamoto,K.Shibata
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5061
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
K.Shibata.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 80 keV
In JENDL-3.3, resonance parameters and scattering radius
were based on Mughabghab et al./1/ The levels whose
neutron width was unknown were assumed to be p-wave
resonances, and a reduced neutron width of 830 meV was
tentatively given for these levels. Neutron orbital angular
momentum L of some resonances was estimated with a method of
Bollinger and thomas/2/. Averaged radiation width of 140
meV was derived from the systematics of measured values for
neighboring nuclides. A negative resonance was added so as
to reproduce the thermal capture and elastic scattering
cross sections given by Mughabghab et al.
In JENDL-4, the data above 14 keV were taken from the wrok
of Carlton et al./3/ A value of 140 meV was assumed for
the radiation width. The upper boudary was extended to 80
keV.
Unresolved resonance region : 80 keV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.4806e+00
Elastic 4.3449e+00
n,gamma 1.3568e-01 7.8618e+00
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,16 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./7/ (+)
proton omp: Kunieda,S. et al./7/
deuteron omp: Lohr,J.M. and Haeberli,W./8/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
alpha omp: Huizenga,J.R. and Igo,G./10/
(+) omp parameters were modified.
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/14/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/15/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/16/,/17/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sn-124
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 1.13174 2 + *
2 2.10171 4 +
3 2.10900 5 -
4 2.12930 0 +
5 2.12960 2 +
6 2.19216 4 -
7 2.20462 5 -
8 2.22176 4 +
9 2.32501 7 -
10 2.36650 4 -
11 2.42632 2 +
12 2.44800 8 +
13 2.45434 6 +
14 2.56815 6 -
15 2.57844 8 +
16 2.60250 3 - *
17 2.61445 4 -
18 2.65660 10 +
19 2.68852 0 +
20 2.70178 5 -
21 2.70319 2 +
22 2.70600 4 +
23 2.75305 4 -
24 2.83658 3 +
25 2.85513 6 -
26 2.87537 2 +
27 2.87867 2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sn-125 16.1653 1.0733 -1.4420 0.6783 -0.3617 5.7801
Sn-124 15.3994 2.1553 -1.0033 0.7260 0.3147 7.5454
Sn-123 15.9572 1.0820 -0.0224 0.6542 -0.5670 5.7354
Sn-122 15.1883 2.1729 0.1587 0.6646 0.6099 6.7179
In-124 15.3217 0.0000 -0.3915 0.6954 -1.7265 4.9806
In-123 14.6475 1.0820 0.1996 0.6115 0.1625 4.5397
In-122 15.1132 0.0000 0.9721 0.6133 -1.2958 3.9041
In-121 14.4439 1.0909 1.3854 0.6275 -0.2553 5.0642
Cd-123 15.9572 1.0820 0.4830 0.7005 -1.2943 6.7635
Cd-122 15.1883 2.1729 0.5773 0.6134 0.9712 5.9920
Cd-121 15.7486 1.0909 1.5385 0.6783 -1.3360 6.5598
Cd-120 14.9768 2.1909 1.6826 0.6507 0.3296 6.8575
Cd-119 15.5394 1.1000 2.5578 0.6443 -1.1874 6.1408
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sn-125
--------------------------------------------------------
* E1: ER = 15.45 (MeV) EG = 4.85 (MeV) SIG = 283.55 (mb)
* M1: ER = 8.20 (MeV) EG = 4.00 (MeV) SIG = 0.65 (mb)
* E2: ER = 12.60 (MeV) EG = 4.61 (MeV) SIG = 2.58 (mb)
--------------------------------------------------------
References
1) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
2) Bollinger, L.M., Thomas, G.E.: Phys. Rev., 171,1293(1968).
3) Carlton, R.F.: Phys. Rev., C54, 2445 (1996).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
10) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
11) Kalbach,C.: Phys. Rev. C33, 818 (1986).
12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
16) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
17) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).