50-Sn-126
50-Sn-126 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 5067
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonances
No resolved resonance parameters
Unresolved resonance region : 6.8 keV - 200 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /1/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /2/ and CCONE /3/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.9138e+00
Elastic 4.8197e+00
n,gamma 9.0035e-02 9.6380e-02
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /3/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /3/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /3/.
MT= 22 (n,na) cross section
Calculated with CCONE code /3/.
MT= 28 (n,np) cross section
Calculated with CCONE code /3/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /3/.
MT=102 Capture cross section
Calculated with CCONE code /3/.
MT=103 (n,p) cross section
Calculated with CCONE code /3/.
MT=104 (n,d) cross section
Calculated with CCONE code /3/.
MT=105 (n,t) cross section
Calculated with CCONE code /3/.
MT=106 (n,He3) cross section
Calculated with CCONE code /3/.
MT=107 (n,a) cross section
Calculated with CCONE code /3/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /3/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /3/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /3/.
MT= 22 (n,na) reaction
Calculated with CCONE code /3/.
MT= 28 (n,np) reaction
Calculated with CCONE code /3/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /3/.
MT=102 Capture reaction
Calculated with CCONE code /3/.
*****************************************************************
Nuclear Model Calculation with CCONE code /3/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./4/ (+)
proton omp: Kunieda,S. et al./4/
deuteron omp: Lohr,J.M. and Haeberli,W./5/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./6/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./6/
alpha omp: Huizenga,J.R. and Igo,G./7/
(+) omp parameters were modified.
2) Two-component exciton model/8/
* Global parametrization of Koning-Duijvestijn/9/
was used.
* Gamma emission channel/10/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/11/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/12/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/13/,/14/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Sn-126
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 1.14115 2 + *
2 2.04974 4 +
3 2.11079 2 +
4 2.13009 2 +
5 2.16154 5 -
6 2.19422 4 -
7 2.21899 7 -
8 2.25652 3 -
9 2.27685 2 +
10 2.29800 1 +
11 2.37046 2 +
12 2.47193 4 +
13 2.47751 6 -
14 2.48824 8 +
15 2.55000 3 -
16 2.56450 10 +
17 2.63103 3 +
18 2.63664 2 +
19 2.66298 7 +
20 2.71206 4 +
21 2.72000 3 -
22 2.74257 1 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Sn-127 16.3728 1.0648 -3.3108 0.7888 -0.7788 7.5329
Sn-126 15.6101 2.1381 -2.6047 0.8273 -0.2048 9.2786
Sn-125 16.1653 1.0733 -1.4420 0.6783 -0.3617 5.7801
Sn-124 15.3994 2.1553 -1.0033 0.7260 0.3147 7.5454
In-126 15.5298 0.0000 -2.3056 0.6831 -0.9476 4.1443
In-125 14.8507 1.0733 -1.3884 0.6557 0.2272 4.7782
In-124 15.3217 0.0000 -0.3915 0.6954 -1.7265 4.9806
In-123 14.6475 1.0820 0.1996 0.6115 0.1625 4.5397
Cd-124 15.3994 2.1553 -0.6710 0.6750 0.7153 6.7076
Cd-123 15.9572 1.0820 0.4830 0.7005 -1.2943 6.7635
Cd-122 15.1883 2.1729 0.5773 0.6134 0.9712 5.9920
Cd-121 15.7486 1.0909 1.5385 0.6783 -1.3360 6.5598
--------------------------------------------------------
Table 3. Gamma-ray strength function for Sn-127
--------------------------------------------------------
* E1: ER = 15.39 (MeV) EG = 4.82 (MeV) SIG = 288.56 (mb)
* M1: ER = 8.16 (MeV) EG = 4.00 (MeV) SIG = 0.65 (mb)
* E2: ER = 12.53 (MeV) EG = 4.59 (MeV) SIG = 2.56 (mb)
--------------------------------------------------------
References
1) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
2) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
3) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
5) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
6) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
7) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
8) Kalbach,C.: Phys. Rev. C33, 818 (1986).
9) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
10) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
11) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
12) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
13) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
14) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).