38-Sr- 86
38-Sr- 86 JAEA EVAL-AUG09 K.Shibata, A.Ichihara, S.Kunieda
DIST-MAY10 20091126
----JENDL-4.0 MATERIAL 3831
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-08 Evaluated by K. Shibata, A. Ichihara and S. Kunieda.
09-10 Compiled by K. Shibata.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 37.12 keV
The resolved resonance parameters for JENDL-3 were taken
from JENDL-2 which was evaluated on the basis of the
measured data by Camarda et al./1/ and Musgrove et al./2/
Those of the first resonance level at 588.4 eV were adjusted
so as to reproduce the capture cross section of 1.04+-0.07
barns at 0.0253 eV and its resonance integral of 4.79+-0.24
barns given by Mughabghab et al./3/ Scattering radius was
also modified to 7.25 fm on the basis of the graph (Fig.1,
part A) of Ref./3/
In JENDL-4.0, the resolved resonance parameters remain
unchanged.
Unresolved resonance region: 37.12 keV - 1 MeV
The parameters were obtained by fitting to the total and
capture cross sections calculated from POD /4/. The
unresolved parameters should be used only for self-shielding
calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barns) (barns)
----------------------------------------------------------
Total 5.1981E+00
Elastic 4.1578E+00
n,gamma 1.0403E+00 4.8035E+00
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Calculated with POD code /4/.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic cross sections from total
cross sections.
MT= 3 Non-elastic cross section
Sum of partial non-elastic cross sections.
MT= 4,51-91 (n,n') cross section
Calculated with POD code /4/.
MT= 16 (n,2n) cross section
Calculated with POD code /4/.
MT= 22 (n,na) cross section
Calculated with POD code /4/.
MT= 28 (n,np) cross section
Calculated with POD code /4/.
MT=102 Capture cross section
Calculated with POD code /4/.
MT=103 (n,p) cross section
Calculated with POD code /4/.
MT=104 (n,d) cross section
Calculated with POD code /4/.
MT=105 (n,t) cross section
Calculated with POD code /4/.
MT=106 (n,He3) cross section
Calculated with POD code /4/.
MT=107 (n,a) cross section
Calculated with POD code /4/.
MT=203 (n,xp) cross section
Calculated with POD code /4/.
MT=204 (n,xd) cross section
Calculated with POD code /4/.
MT=205 (n,xt) cross section
Calculated with POD code /4/.
MT=206 (n,xHe3) cross section
Calculated with POD code /4/.
MT=207 (n,xa) cross section
Calculated with POD code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with POD code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Neutron spectra calculated with POD/4/.
MT= 22 (n,na) reaction
Neutron spectra calculated with POD/4/.
MT= 28 (n,np) reaction
Neutron spectra calculated with POD/4/.
MT= 51 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 52 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 53 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 54 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 55 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 56 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 57 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 58 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 59 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 60 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 61 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 62 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 63 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 64 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 65 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 66 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 67 (n,n') reaction
Neutron angular distributions calculated with POD/4/.
MT= 91 (n,n') reaction
Neutron spectra calculated with POD/4/.
MT= 203 (n,xp) reaction
Proton spectra calculated with POD/4/.
MT= 204 (n,xd) reaction
Deuteron spectra calculated with POD/4/.
MT= 205 (n,xt) reaction
Triton spectra calculated with POD/4/.
MT= 206 (n,xHe3) reaction
He3 spectra calculated with POD/4/.
MT= 207 (n,xa) reaction
Alpha spectra calculated with POD/4/.
MF=12 Gamma-ray multiplicities
MT= 3 Non-elastic gamma emission
Calculated with POD code /4/.
MF=14 Gamma-ray angular distributions
MT= 3 Non-elastic gamma emission
Assumed to be isotropic.
MF=15 Gamma-ray spectra
MT= 3 Non-elastic gamma emission
Calculated with POD code /4/.
***************************************************************
* Nuclear Model Calculations with POD Code /4/ *
***************************************************************
1. Theoretical models
The POD code is based on the spherical optical model, the
distorted-wave Born approximaiton (DWBA), one-component exciton
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-
tical model. With the preequilibrim model, semi-empirical
pickup and knockout process can be taken into account for
composite-particle emission. The gamma-ray emission from the
compound nucleus can be calculated within the framework of the
exciton model. The code is capable of reading in particle
transmission coefficients calculated by separate spherical or
coupled-channel optical model code.
2. Optical model parameters
Neutrons:
Coupled-channel optical model parameters /5/
Protons:
Koning and Delaroche /6/
Deuterons:
Lohr and Haeberli /7/
Tritons:
Becchetti and Greenlees /8/
He-3:
Becchetti and Greenlees /8/
Alphas:
Lemos /9/ potentials modified by Arthur and Young /10/
3. Level scheme of Sr- 86
-------------------------
No. Ex(MeV) J PI
-------------------------
0 0.00000 0 +
1 1.07668 2 +
2 1.85417 2 +
3 2.10600 0 +
4 2.20300 0 +
5 2.22974 4 +
6 2.36500 4 -
7 2.48191 3 -
8 2.49900 5 +
9 2.64219 2 +
10 2.67284 5 -
11 2.78850 2 +
12 2.85700 6 +
13 2.87828 4 +
14 2.95568 8 +
15 2.99736 3 -
16 3.04500 4 +
17 3.05578 5 -
-------------------------
Levels above 3.06578 MeV are assumed to be continuous.
4. Level density parameters
Energy-dependent parameters of Mengoni-Nakajima /11/ were used
----------------------------------------------------------
Nuclei a* Pair Esh T E0 Ematch Elv_max
1/MeV MeV MeV MeV MeV MeV MeV
----------------------------------------------------------
Sr- 87 12.367 1.287 -0.021 0.633 0.786 4.453 2.596
Sr- 86 11.310 2.588 0.767 0.818 0.770 8.345 3.056
Sr- 85 11.114 1.302 1.863 0.862 -1.338 8.278 1.794
Sr- 84 11.089 2.619 1.992 0.730 1.218 7.405 3.279
Rb- 86 9.932 0.000 0.007 0.898 -1.348 5.547 1.738
Rb- 85 10.720 1.302 1.529 0.855 -0.855 7.650 2.088
Rb- 84 11.060 0.000 2.125 0.783 -1.914 5.688 0.797
Kr- 84 11.089 2.619 1.235 0.745 1.364 7.286 3.951
Kr- 83 11.668 1.317 2.381 0.710 -0.316 6.290 1.889
Kr- 82 10.867 2.650 2.503 0.781 0.700 8.353 3.187
----------------------------------------------------------
5. Gamma-ray strength functions
M1, E2: Standard Lorentzian (SLO)
E1 : Generalized Lorentzian (GLO) /12/
6. Preequilibrium process
Preequilibrium is on for n, p, d, t, He-3, and alpha.
Preequilibrium capture is on.
References
1) H.Camarda et al., NCSAC-31, 40 (1970).
2) A.R.de L.Musgrove et al., Proc. Int. Conf. on Neutron Physics
and Nucl. Data for Reactors, Harwell 1978, 449.
3) S.F.Mughabghab et al., "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
4) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).
5) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).
6) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).
7) J.M.Lohr, W.Haeberli, Nucl. Phys. A232, 381 (1974).
8) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization
Phenomena in Nuclear Reactions," p.682, The University
of Wisconsin Press (1971).
9) O.F.Lemos, Orsay Report, Series A, No.136 (1972).
10) E.D.Arthur, P.G.Young, LA-8626-MS (1980).
11) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151
(1994).
12) J.Kopecky, M.Uhl, Nucl. Sci. Eng. 41, 1941 (1990).