65-Tb-160
65-Tb-160 JAEA+ EVAL-Dec09 N.Iwamoto,A.Zukeran
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 6528
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
A.Zukeran.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 9 eV
The JENDL-4 evaluation is based on the data obtained by
Vertebnyj et al./1/ A radiation width fo 100 meV was
assumed for the 8.27-eV resonance. A scattering radius
of 7.8 fm, which was the same as that for Tb-159, was
used.
Unresolved resonance region : 9.0 eV - 100.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 3.5548e+02
Elastic 4.7921e+00
n,gamma 3.5069e+02 3.5881e+03
n,alpha 2.9686e-06
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /4/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /4/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,3,13 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: McFadden,L. and Satchler,G.R./9/
(+) omp parameters were modified.
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Tb-160
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 3 - *
1 0.06369 1 -
2 0.06411 4 +
3 0.07887 4 - *
4 0.07909 0 -
5 0.10558 2 -
6 0.12648 5 +
7 0.13322 1 -
8 0.13873 1 +
9 0.13947 2 -
10 0.15645 3 -
11 0.16775 2 +
12 0.16870 4 -
13 0.17683 5 - *
14 0.20040 3 +
15 0.22263 0 +
16 0.23278 1 +
17 0.23698 3 -
18 0.24416 4 -
19 0.25754 4 -
20 0.26523 4 +
21 0.26882 2 +
22 0.27900 4 -
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Tb-161 18.4519 0.9457 2.4950 0.5607 -1.0970 5.5427
Tb-160 18.9000 0.0000 2.5855 0.5446 -1.9885 4.4661
Tb-159 21.0000 0.9517 2.9024 0.4767 -0.7563 4.8234
Tb-158 19.3000 0.0000 3.0376 0.4617 -1.2200 3.2269
Gd-160 19.1372 1.8974 2.4922 0.5804 -0.6190 7.1078
Gd-159 19.9000 0.9517 2.6302 0.5300 -1.1252 5.4620
Gd-158 19.3000 1.9093 2.8152 0.5596 -0.4648 6.8458
Gd-157 20.0000 0.9577 3.0516 0.5315 -1.2892 5.6268
Gd-156 19.0000 1.9215 3.2702 0.5513 -0.3880 6.7098
Eu-159 18.2543 0.9517 2.5499 0.5516 -0.9411 5.3313
Eu-158 18.8084 0.0000 2.4374 0.4933 -1.3276 3.5000
Eu-157 18.0565 0.9577 2.7904 0.5507 -0.9395 5.3155
Eu-156 18.0000 0.0000 2.8275 0.5361 -1.7176 4.0906
Eu-155 17.9000 0.9639 3.3259 0.5676 -1.2578 5.7030
Eu-154 19.2000 0.0000 3.6717 0.5485 -2.4486 4.8922
--------------------------------------------------------
Table 3. Gamma-ray strength function for Tb-161
--------------------------------------------------------
K0 = 1.900 E0 = 4.500 (MeV)
* E1: ER = 12.22 (MeV) EG = 2.34 (MeV) SIG = 160.00 (mb)
ER = 15.67 (MeV) EG = 4.97 (MeV) SIG = 220.00 (mb)
ER = 5.60 (MeV) EG = 1.80 (MeV) SIG = 5.00 (mb)
ER = 3.00 (MeV) EG = 1.50 (MeV) SIG = 0.60 (mb)
* M1: ER = 7.54 (MeV) EG = 4.00 (MeV) SIG = 1.36 (mb)
* E2: ER = 11.58 (MeV) EG = 4.18 (MeV) SIG = 3.74 (mb)
--------------------------------------------------------
References
1) Vertebnyj, V.P. et al.: 83 Kiev, 3, 37 (1983).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).