69-Tm-169
69-Tm-169 JAEA EVAL-Jul09 N.Iwamoto
DIST-MAY10 20100125
----JENDL-4.0 MATERIAL 6925
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-07 The resolved resonance parameters were evaluated by
N.Iwamoto.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region : below 1.13 keV
Resolved resonance parameters were taken from Mughabghab
/1/. If the total spin J of resonance level was not
known, it was determined from the spin distribution of
the level density randomly. The negative resonance was
placed so as to reproduce the cross sections at thermal
energy recommended by Mughabghab /1/.
Unresolved resonance region : 1.13 keV - 110.0 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 1.1145e+02
Elastic 6.3808e+00
n,gamma 1.0507e+02 1.6240e+03
n,alpha 5.0693e-06
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /4/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /4/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,3,5,8,19 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: McFadden,L. and Satchler,G.R./9/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of generalized Lorentzian form
/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Tm-169
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 1/2 + *
1 0.00841 3/2 + *
2 0.11819 5/2 + *
3 0.13893 7/2 + *
4 0.31615 7/2 +
5 0.33212 9/2 + *
6 0.34194 1/2 -
7 0.34503 5/2 -
8 0.36767 11/2 + *
9 0.37927 7/2 -
10 0.43012 9/2 -
11 0.43352 9/2 +
12 0.47288 9/2 -
13 0.47497 3/2 -
14 0.57083 3/2 +
15 0.57538 11/2 +
16 0.58820 11/2 -
17 0.60290 13/2 -
18 0.63330 5/2 +
19 0.63700 13/2 + *
20 0.64676 7/2 -
21 0.69120 15/2 +
22 0.71879 7/2 +
23 0.72545 13/2 -
24 0.74125 13/2 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Tm-170 19.4000 0.0000 1.5224 0.5149 -1.4531 3.8141
Tm-169 19.2395 0.9231 2.0106 0.5639 -1.2273 5.7204
Tm-168 19.8160 0.0000 2.0640 0.5004 -1.5183 3.8008
Tm-167 19.0430 0.9286 2.4345 0.5776 -1.4839 6.0332
Er-169 20.3000 0.9231 1.6617 0.5240 -0.8867 5.1976
Er-168 19.9000 1.8516 1.8458 0.5567 -0.3394 6.6845
Er-167 20.6000 0.9286 1.9183 0.5387 -1.2261 5.6418
Er-166 19.7502 1.8628 2.1732 0.5344 -0.0901 6.2974
Ho-168 19.8160 0.0000 1.5469 0.4357 -0.7497 2.6096
Ho-167 19.0430 0.9286 1.8595 0.5488 -0.9339 5.3377
Ho-166 19.1000 0.0000 1.7188 0.5231 -1.5338 3.9232
Ho-165 18.8462 0.9342 2.0651 0.5709 -1.2206 5.7487
Ho-164 19.4138 0.0000 2.2576 0.4706 -1.1596 3.2308
Ho-163 18.6492 0.9399 2.6642 0.5676 -1.2957 5.7740
--------------------------------------------------------
Table 3. Gamma-ray strength function for Tm-170
--------------------------------------------------------
* E1: ER = 12.02 (MeV) EG = 3.00 (MeV) SIG = 148.10 (mb)
ER = 15.95 (MeV) EG = 5.15 (MeV) SIG = 296.21 (mb)
* M1: ER = 7.40 (MeV) EG = 4.00 (MeV) SIG = 0.82 (mb)
* E2: ER = 11.37 (MeV) EG = 4.07 (MeV) SIG = 4.10 (mb)
--------------------------------------------------------
References
1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).