92-U -233

 92-U -233 JAEA+      EVAL-JAN10 O.Iwamoto,N.Otuka,S.Chiba,et al. 
                      DIST-MAY10                       20100326   
----JENDL-4.0         MATERIAL 9222                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
History                                                           
06-07 Total and fission cross sections were modified.             
06-10 Nu-p was modified.                                          
07-06 Theoretical calculation was made with CCONE code.           
07-08 Theoretical calculation was made with CCONE code.           
07-11 Fission cross section was revised with simultaneous         
      evaluation.                                                 
07-12 Fission cross section was revised with new results of       
      simultaneous evaluation.                                    
08-01 Fission cross section was revised.                          
08-02 Fission cross section and nu-p were revised.                
      CCONE calculation was made with revised parameters.         
08-03 Interpolation of (5,18) was changed.                        
      Data were compiled as JENDL/AC-2008/1/.                     
09-04 MF01 was revised.                                           
09-08 (MF1,MT458) was evaluated.                                  
09-10 fission cross section was revised.                          
10-01 Data of prompt gamma rays due to fission were given.        
10-03 Covariance data were given.                                 
                                                                  
                                                                  
MF= 1 General information                                         
  MT=452 Number of Neutrons per fission                           
    Sum of MT=455 and 456.                                        
                                                                  
  MT=455 Delayed neutron data                                     
    At the thermal neutron energy, nu-d of 0.0067 was obtained    
    from the data of Borzakov et al./2/, Conant et al./3/ and     
    Keepin et al./4/.                                             
    Nu-d above 10 keV was determined from experimental data       
    measured by Krick and Evans/5,6/, Piksaykin et al./7/,        
    and Masters et al./8/.                                        
                                                                  
    Decay constants were taken from Ref./9/.                      
                                                                  
  MT=456 Number of prompt neutrons per fission                    
    Nu-p was determined from the data of Protopopov et al./10/,   
    Smirenkin et al./11/, Flerov et al./12/, Hopkins et al./13/,  
    Colvin et al./14,15/, Mather et al./16/, Walsh et al./17/,    
    Hockenbury/18/, Nurpeisov et al./19,20/, Sergachev et al./21/,
    Nefedov et al./22/, and Gwin et al./23,24/                    
    Nu-p of Cf-252 SF = 3.756+-0.031 /25/ was used.               
    They were reproduced with two straight lines below and above  
    about 1.5 MeV.                                                
                                                                  
  MT=458 Components of energy release due to fission              
    Total energy and prompt energy were calculated from mass      
    balance using JENDL-4 fission yields data and mass excess     
    evaluation. Mass excess values were from Audi's 2009          
    evaluation/26/. Delayed energy values were calculated from    
    the energy release for infinite irradiation using JENDL FP    
    Decay Data File 2000 and JENDL-4 yields data. For delayed     
    neutron energy, as the JENDL FP Decay Data File 2000/27/ does 
    not include average neutron energy values, the average values 
    were calculated using the formula shown in the report by      
    T.R. England/28/. The fractions of prompt energy were         
    calculated using the fractions of Sher's evaluation/29/ when  
    they were provided. When the fractions were not given by Sher,
    averaged fractions were used.                                 
                                                                  
                                                                  
MF= 2 Resonance parameters                                        
  MT=151                                                          
  Resolved resonance parameters (RM: 1.0-5 eV - 600 eV)           
    Evaluation by Leal et al. for ENDF/B-VII.0 was adopted.       
                                                                  
    See Appendix A1.                                              
                                                                  
  Unresolved resonance parameters (600 eV - 30 keV)               
    Parameters were determined with ASREP code/30/ so as to       
    reproduce total, fission and capture cross sections.          
                                                                  
     Thermal cross sections and resonance integrals (at 300K)     
    -------------------------------------------------------       
                    0.0253 eV    reson. integ.(*)                 
                     (barns)       (barns)                        
    -------------------------------------------------------       
    total           588.77                                        
    elastic          12.18                                        
    fission         531.34           775                          
    capture          45.26           139                          
    -------------------------------------------------------       
         (*) In the energy range from 0.5 eV to 10 MeV.           
                                                                  
                                                                  
MF= 3 Neutron cross sections                                      
  Cross sections above the resolved resonance region except for   
  the total (MT=1), elastic scattering (MT=2) and fission cross   
  sections (MT=18, 19, 20, 21, 38) were calculated with CCONE     
  code/31/. The model parameters were determined by considering   
  integral experimental data as well as measured cross-section    
  data.                                                           
                                                                  
  In the CCONE calculation the CC OMP of Soukhovitskii et al./32/ 
  was modified so as to reproduce well the experimental data of   
  total cross section measured by Poenitz et al./33,34/ and       
  Guber et al./35/                                                
                                                                  
  Other parameters of CCONE calculation were adjusted to the      
  fission cross section of JENDL-3.3 and the capture cross section
  measured by Hopkins and Diven/36/.                              
                                                                  
  The results of CC calculation for the elastic scattering was    
  increased by 0.2 b above 1.5 MeV to improve integral benchmark  
  tests.                                                          
                                                                  
  MT=1 Total cross section                                        
    Experimental data measured after 1960 were anlyzed by the GMA 
    code/37/ with the Chiba and Smith approach/38/ for PPP        
    minimization.                                                 
                                                                  
    Experimental data sets are summarized below.                  
    --------------------------------------------------------------
        EXFOR      Energy range (eV)  Authors           Reference 
    --------------------------------------------------------------
        10047.095  2.26E+6 - 1.50E+7  D.G.Foster Jr.+   /39/      
        10225.028  5.05E+5 - 7.96E+6  L.Green+          /40/      
        10025.028  9.00E+5 - 9.89E+6  L.Green+          /40/      
        10833.003  4.00E+4 - 2.09E+5  W.P.Poenitz+      /41/      
        10833.002  5.80E+4 - 4.43E+6  W.P.Poenitz+      /41/      
        10935.005  4.80E+4 - 4.81E+6  W.P.Poenitz+      /33/      
        12323.002  3.40E+3 - 1.61E+6  D.C.Stupegia      /42/      
        12333.002  6.01E+2 - 8.81E+3  N.J.Pattenden+    /43/      
        12853.053  1.82E+6 - 2.03E+7  W.P.Poenitz+      /34/      
        13891.004  6.09E+2 - 6.85E+5  K.H.Guber+        /35/      
    --------------------------------------------------------------
                                                                  
  MT=2 Elastic scattering cross section                           
    Calculated as total - non-elstic scattering cross sections    
                                                                  
  MT=18 Fission cross section                                     
    Below 10 keV, experimental data measured after 1960 were      
    anlyzed by the GMA code/37/ with the Chiba and Smith          
    approach/38/ for PPP minimization. Data were normalized to    
    absolute cross section by adopting the JENDL-3.3 U-235(n,f)   
    cross section if the data were given as the ratios to the     
    U-235(n,f) cross section.                                     
                                                                  
    Above 10 keV, experimental data measured after 1960 were      
    analyzed by simultaneous fitting of U-233, U-235, U-238,      
    Pu-239, Pu-240 and Pu-241 fission cross sections and their    
    ratio by the SOK code/44/. Covariance matrix reported in      
    Manabe et al./45/ was also considered in the analysis.        
                                                                  
    Experimental data sets are summarized below.                  
    g: used in GMA analysis, s: used in SOK analysis              
    --------------------------------------------------------------
     Cross section                                                
    --------------------------------------------------------------
        EXFOR      Energy range (eV)  Authors           Reference 
    --------------------------------------------------------------
     gs 13890.002  6.00E+2 - 7.01E+5  K.H.Guber+        /46/      
     gs 40927.002  1.94E+6            V.I.Shpakov       /47/      
     gs 12910.002  1.46E+7            K.R.Zasadny+      /48/      
      s 40911.003  1.47E+7            I.D.Alkhazov+     /49/      
      s 40610.002  4.40E+4            E.A.Zhagrov+      /50/      
      s 40587.002  2.45E+4            A.V.Murzin+       /51/      
     gs 10756.002  1.37E+5 - 8.05E+6  W.P.Poenitz       /52/      
     gs 40547.003  1.48E+7            V.M.Adamov+       /53/      
     gs 32625.002  5.00E+5 - 1.00E+6  W.G.Yan+          /54/      
      s 20446.002  5.00E+3 - 3.00E+4  S.Nizamuddin+     /55/      
     g  20003.005  6.00E+2 - 3.00E+3  M.G.Cao+          /56/      
     gs 10056.002  6.00E+2 - 9.87E+3  D.W.Bergen        /57/      
      s 30035.003  1.41E+7            R.H.Iyer+         /58/      
      s 10267.041  7.50E+3 - 8.50E+4  R.Gwin+           /59/      
     g  10056.002  6.41E+4 - 2.85E+6  D.W.Bergen        /57/      
     g  12360.002  6.00E+2 - 9.78E+5  D.W.Bergen+       /60/      
     g  21463.002  4.00E+4 - 5.05E+5  P.H.White+        /61/      
     g  40650.002  2.80E+5 - 2.63E+6  G.N.Smirenkin+    /62/      
     g  12341.002  6.13E+2 - 9.60E+2  M.S.Moore+        /63/      
    --------------------------------------------------------------
                                                                  
     Ratio to U-235(n,f) cross section                            
    --------------------------------------------------------------
        EXFOR      Energy range (eV)  Authors           Reference 
    --------------------------------------------------------------
     gs 41455.002  5.77E+5 - 9.75E+6  O.A.Shcherbakov+  /64/      
     gs 41455.002  1.01E+7 - 1.94E+7  O.A.Shcherbakov+  /64/      
     gs 13134.004  1.47E+7            J.W.Meadows+      /65/      
     g  41432.003  2.00E+4 - 6.38E+6  D.L.Shpak         /66/      
     gs 22014.003  4.90E+5 - 6.97E+6  K.Kanda+          /67/      
     gs 40607.002  6.42E+5 - 8.25E+5  D.L.Shpak+        /68/      
     gs 40474.002  2.40E+4 - 7.40E+6  B.I.Fursov+       /69/      
     g  40474.002  1.27E+5 - 7.00E+6  B.I.Fursov+       /69/      
      s 40361.003  1.50E+4 - 1.94E+6  D.L.Shpak+        /70/      
     gs 10236.002  1.42E+5 - 9.37E+6  J.W.Meadows       /71/      
     g  10562.003  8.50E+2 - 1.95E+7  G.W.Carlson+      /72/      
     gs 20363.002  5.20E+3 - 1.01E+6  E.Pfletschinger+  /73/      
     g  10084.003  6.60E+2 - 2.40E+4  W.K.Lehto+        /74/      
     g  40309.003  4.85E+5 - 2.51E+6  V.G.Nesterov+     /75/      
     g  40027.004  3.30E+5 - 2.58E+6  G.N.Smirenkin+    /76/      
      s 22282.003  1.35E+7 - 1.49E+7  F.Manabe+         /45/      
    --------------------------------------------------------------
                                                                  
    The obtained cross section in the energy range from 1 to 4    
    MeV and from 7 to 8 MeV was slightly modified for JENDL-4.    
                                                                  
  MT=19, 20, 21, 38 Multi-chance fission cross sections           
    Calculated with CCONE code, and renormalized to the total     
    fission cross section (MT=18).                                
                                                                  
                                                                  
MF= 4 Angular distributions of secondary neutrons                 
  MT=2 Elastic scattering                                         
    Calculated with CCONE code.                                   
                                                                  
  MT=18 Fission                                                   
    Isotropic distributions in the laboratory system were assumed.
                                                                  
                                                                  
MF= 5 Energy distributions of secondary neutrons                  
  MT=18  Prompt fission neutron spectrum                          
    Below 5 MeV, data of JENDL-3.3/77/ were adopted.              
    Comment of JENDL-3.3:                                         
    * Distributions were calculated with the modified Madland-Nix 
      model/78,79/.  The compound nucleus formation cross         
      sections for fission fragments (FF) were calculated using   
      Becchetti-Greenlees potential/80/. Up to 4th-chance-fission 
      were considered at high incident neuttron energies.         
      The Ignatyuk formula/81/ were used to generate the level    
      density parameters.                                         
        Parameters adopted:                                       
           Total average FF kinetic energy = 172.311-0.0212*E(MeV)
           Average energy release          = 188.438 MeV          
           Average mass number of light FF =  95                  
           Average mass number of heavy FF = 139                  
           Level density of the light FF   =  9.999- 10.094       
           Level density of the heavy FF   = 11.89 - 12.20        
        Note that the parameters vary with the incident energy    
        within the indicated range.                               
                                                                  
    Above 5.5 MeV, the distributions were calculated with CCONE   
    code/31/.                                                     
                                                                  
  MT=455  Delayed neutron spectrum.                               
    Summation calculation made by Brady and England/9/ was        
    adopted.                                                      
                                                                  
                                                                  
MF= 6 Energy-angle distributions                                  
    Calculated with CCONE code.                                   
    Distributions from fission (MT=18) are not included.          
                                                                  
                                                                  
MF=12 Photon production multiplicities                            
  MT=18 Fission                                                   
    Calculated from the total energy released by the prompt       
    gamma-rays due to fission given in MF=1/MT=458 and the        
    average energy of gamma-rays.                                 
                                                                  
                                                                  
MF=14 Photon angular distributions                                
  MT=18 Fission                                                   
    Isotoropic distributions were assumed.                        
                                                                  
                                                                  
MF=15 Continuous photon energy spectra                            
  MT=18 Fission                                                   
    Experimental data measured by Verbinski et al./82/ for        
    U-235 thermal fission were adopted.                           
                                                                  
                                                                  
MF=31 Covariances of average number of neutrons per fission       
  MT=452 Number of neutrons per fission                           
    Combination of covariances for MT=455 and MT=456.             
                                                                  
  MT=455                                                          
    Nu-d at 0.0253eV was estimated as 0.00067+-0.0002 from        
    experimental data/2,3,4/. Error of 3% was adopted.            
    Above 100 eV error of 8% was assumed.                         
                                                                  
  MT=456                                                          
    Covariance of obtained by fitting a stlight line to           
    experimental data (See MF1,MT456).                            
                                                                  
                                                                  
MF=32 Covariances of resonance parameters                         
    Below 300 eV: covariance matrix of resonance parameters       
                  obtained with SAMMY code /83/ was given.        
                                                                  
                                                                  
MF=33 Covariances of neutron cross sections                       
  Covariances were given to all the cross sections by using       
  KALMAN code/84/ and the covariances of model parameters         
  used in the theoretical calculations.                           
                                                                  
  For the following cross sections, covariances were determined   
  by different methods.                                           
                                                                  
  MT=1, 2 Total and elastic scattering cross sections             
    300 - 600 eV, uncertainty of 5% was assumed.                  
    Above 600 keV, Covariance matrix was obtained with CCONE and  
    KALMAN codes/84/.                                             
                                                                  
  MT=18 Fission cross section                                     
    300 - 600 eV, covariance matrices was calculated from those   
    of resonance parameters.                                      
                                                                  
    600 eV - 9 keV, covariances were obtained by GMA code.        
                                                                  
    Above 9 keV, covariance matrix was obtained by simultaneous   
    evaluation among the fission cross sections of U-233, U-235,  
    U-238, Pu-239, Pu-240 and Pu-241(See MF=3, MT=18, and /1/).   
    Since the variances are very small, they were adopted by      
    multiplying a factor of 2.                                    
                                                                  
  MT=102 Capture cross section                                    
    300 - 600 eV, covariance matrices was calculated from those   
    of resonance parameters.                                      
    Above 600 keV, Covariance matrix was obtained with CCONE and  
    KALMAN codes/84/.                                             
                                                                  
                                                                  
MF=34 Covariances for Angular Distributions                       
  MT=2 Elastic scattering                                         
    Covariances were given only to P1 components.                 
                                                                  
                                                                  
MF=35 Covariances for Energy Distributions                        
  MT=18 Fission spectra                                           
    Below 5 MeV, based on the covarinaces given in JENDL-3.3.     
    Above 5 MeV, estimated with CCONE and KALMAN codes.           
                                                                  
                                                                  
***************************************************************** 
  Calculation with CCONE code                                     
***************************************************************** 
                                                                  
  Models and parameters used in the CCONE/31/ calculation         
  1) Coupled channel optical model                                
     Levels in the rotational band were included. Optical model   
     potential and coupled levels are shown in Table 1.           
                                                                  
  2) Two-component exciton model/85/                              
    * Global parametrization of Koning-Duijvestijn/86/            
      was used.                                                   
    * Gamma emission channel/87/ was added to simulate direct     
      and semi-direct capture reaction.                           
                                                                  
  3) Hauser-Feshbach statistical model                            
    * Moldauer width fluctuation correction/88/ was included.     
    * Neutron, gamma and fission decay channel were included.     
    * Transmission coefficients of neutrons were taken from       
      coupled channel calculation in Table 1.                     
    * The level scheme of the target is shown in Table 2.         
    * Level density formula of constant temperature and Fermi-gas 
      model were used with shell energy correction and collective 
      enhancement factor. Parameters are shown in Table 3.        
    * Fission channel:                                            
      Double humped fission barriers were assumed.                
      Fission barrier penetrabilities were calculated with        
      Hill-Wheler formula/89/. Fission barrier parameters were    
      shown in Table 4. Transition state model was used and       
      continuum levels are assumed above the saddles. The level   
      density parameters for inner and outer saddles are shown in 
      Tables 5 and 6, respectively.                               
    * Gamma-ray strength function of Kopecky et al/90/,/91/       
      was used. The prameters are shown in Table 7.               
                                                                  
                                                                  
------------------------------------------------------------------
                              Tables                              
------------------------------------------------------------------
                                                                  
Table 1. Coupled channel calculation                              
  --------------------------------------------------              
  * rigid rotor model was applied                                 
  * coupled levels = 0,1,2,3 (see Table 2)                        
  * optical potential parameters /32/                             
    Volume:                                                       
      V_0       = 50.1895  MeV                                    
      lambda_HF = 0.01004  1/MeV                                  
      C_viso    = 15.9     MeV                                    
      A_v       = 12.04    MeV                                    
      B_v       = 81.36    MeV                                    
      E_a       = 385      MeV                                    
      r_v       = 1.25     fm                                     
      a_v       = 0.63     fm                                     
    Surface:                                                      
      W_0       = 16.2027  MeV                                    
      B_s       = 11.19    MeV                                    
      C_s       = 0.01361  1/MeV                                  
      C_wiso    = 23.5     MeV                                    
      r_s       = 1.1803   fm                                     
      a_s       = 0.65     fm                                     
    Spin-orbit:                                                   
      V_so      = 5.75     MeV                                    
      lambda_so = 0.005    1/MeV                                  
      W_so      = -3.1     MeV                                    
      B_so      = 160      MeV                                    
      r_so      = 1.1214   fm                                     
      a_so      = 0.59     fm                                     
    Coulomb:                                                      
      C_coul    = 1.3                                             
      r_c       = 1.2452   fm                                     
      a_c       = 0.545    fm                                     
    Deformation:                                                  
      beta_2    = 0.205125                                        
      beta_4    = 0.076                                           
      beta_6    = 0.0015                                          
                                                                  
  * Calculated strength function                                  
    S0= 0.92e-4 S1= 2.11e-4 R'=  9.64 fm (En=1 keV)               
  --------------------------------------------------              
                                                                  
Table 2. Level Scheme of U-233                                    
  -------------------                                             
  No.  Ex(MeV)   J PI                                             
  -------------------                                             
   0  0.00000  5/2 +  *                                           
   1  0.04035  7/2 +  *                                           
   2  0.09216  9/2 +  *                                           
   3  0.15523 11/2 +  *                                           
   4  0.19700  7/2 +                                              
   5  0.22947 13/2 +                                              
   6  0.29881  5/2 -                                              
   7  0.30194 13/2 -                                              
   8  0.31190  3/2 +                                              
   9  0.31460 15/2 +                                              
  10  0.32083  7/2 -                                              
  11  0.33042  7/2 +                                              
  12  0.34048  5/2 +                                              
  13  0.35379  9/2 -                                              
  14  0.38043  7/2 +                                              
  15  0.39756 11/2 -                                              
  16  0.39850  1/2 +                                              
  17  0.41117 17/2 +                                              
  18  0.41576  3/2 +                                              
  19  0.42500 17/2 +                                              
  20  0.43200  9/2 +                                              
  21  0.45611  5/2 +                                              
  22  0.49700 11/2 +                                              
  23  0.50362  7/2 -                                              
  24  0.51755 19/2 +                                              
  25  0.52200 15/2 -                                              
  26  0.54654  5/2 +                                              
  27  0.56160  9/2 -                                              
  28  0.56700  5/2 -                                              
  29  0.57200  1/2 -                                              
  30  0.57500 11/2 -                                              
  -------------------                                             
  *) Coupled levels in CC calculation                             
                                                                  
Table 3. Level density parameters                                 
  --------------------------------------------------------        
  Nuclide      a*    Pair  Eshell       T      E0  Ematch         
            1/MeV     MeV     MeV     MeV     MeV     MeV         
  --------------------------------------------------------        
    U-234 18.4623  1.5689  2.5578  0.3903 -0.1513  3.9089         
    U-233 18.3945  0.7861  2.4694  0.3820 -0.8201  2.9898         
    U-232 18.3266  1.5757  2.6095  0.3888 -0.1142  3.8806         
    U-231 18.2588  0.7895  2.6793  0.3781 -0.7806  2.9485         
    U-230 18.1909  1.5825  2.6739  0.3937 -0.1509  3.9421         
  --------------------------------------------------------        
                                                                  
Table 4. Fission barrier parameters                               
  ----------------------------------------                        
  Nuclide     V_A    hw_A     V_B    hw_B                         
              MeV     MeV     MeV     MeV                         
  ----------------------------------------                        
    U-234   6.000   1.040   5.400   0.600                         
    U-233   5.600   0.800   5.400   0.520                         
    U-232   5.500   1.040   5.000   0.600                         
    U-231   6.000   0.800   5.600   0.520                         
    U-230   5.800   1.040   5.100   0.600                         
  ----------------------------------------                        
                                                                  
Table 5. Level density above inner saddle                         
  --------------------------------------------------------        
  Nuclide      a*    Pair  Eshell       T      E0  Ematch         
            1/MeV     MeV     MeV     MeV     MeV     MeV         
  --------------------------------------------------------        
    U-234 21.7235  1.8304  2.6000  0.3321 -0.7507  4.0304         
    U-233 20.2008  0.9172  2.6000  0.3667 -2.0299  3.4172         
    U-232 20.1263  1.8383  2.6000  0.3319 -0.5731  3.8383         
    U-231 20.0518  0.9211  2.6000  0.3325 -1.4903  2.9211         
    U-230 19.9772  1.8463  2.6000  0.3332 -0.5651  3.8463         
  --------------------------------------------------------        
                                                                  
Table 6. Level density above outer saddle                         
  --------------------------------------------------------        
  Nuclide      a*    Pair  Eshell       T      E0  Ematch         
            1/MeV     MeV     MeV     MeV     MeV     MeV         
  --------------------------------------------------------        
    U-234 21.7235  1.8304  0.0600  0.3643  0.0626  3.9304         
    U-233 19.2990  0.9172  0.0200  0.4202 -1.2096  3.4172         
    U-232 18.3293  1.8383 -0.0200  0.4264 -0.2156  4.2383         
    U-231 20.0518  0.9211 -0.0600  0.3758 -0.7765  2.9211         
    U-230 19.9772  1.8463 -0.1000  0.3771  0.1493  3.8463         
  --------------------------------------------------------        
                                                                  
Table 7. Gamma-ray strength function for  U-234                   
  --------------------------------------------------------        
  K0 = 1.600   E0 = 4.500 (MeV)                                   
  * E1: ER = 10.90 (MeV) EG = 2.50 (MeV) SIG = 299.61 (mb)        
        ER = 13.80 (MeV) EG = 4.70 (MeV) SIG = 450.00 (mb)        
  * M1: ER =  6.65 (MeV) EG = 4.00 (MeV) SIG =   2.81 (mb)        
  * E2: ER = 10.22 (MeV) EG = 3.30 (MeV) SIG =   6.52 (mb)        
  --------------------------------------------------------        
                                                                  
                                                                  
References                                                        
 1) O.Iwamoto et al.: J. Nucl. Sci. Technol., 46, 510 (2009).     
 2) S.B.Borzakov et al.: Phys. At. Nuclei, 61, 530 (2000).        
 3) J.F.Conant, P.F.Palmedo: Nucl. Sci. Eng., 44, 173 (1971).     
 4) G.R.Keepin et al.: Phys. Rev., 107, 1044 (1957).              
 5) M.S.Krick, A.E.Evans: Nucl. Sci. Eng., 47, 311 (1972).        
 6) A.E.Evans, M.M.Thorpd: Nucl. Sci. Eng., 50, 80 (1973).        
 7) V.M.Piksaykin et al. PTE,6,29 (2006) = EXFOR41495.            
 8) C.F.Masters et al.: Nucl. Sci. Eng., 36, 202 (1969).          
 9) M.C.Brady, T.R.England: Nucl. Sci. Eng., 103, 129 (1989).     
10) A.N.Protopopov, M.V.Blinov: J. Nucl. Energy, A10, 65 (1959).  
11) G.N.Smirenkin et al.: J. Nucl. Energy, A9, 155 (1959).        
12) Flerov et al.: At. Energiya, 10, 68 (1961) = EXFOR40639.      
13) J.C.Hopkins, B.C.Diven: Nucl. Phys., 48, 433 (1963).          
14) D.W.Colvin et al.: private communication. EXFOR 22502.002.    
15) D.W.Colvin et al.: 1966 Paris, Vol. 1, p.307 (1966).          
16) D.S.Mather et al.: Nucl. Phys., 66, 149 (1965).               
17) R.L.Walsh, J.W.Boldeman: J.Nucl. Energy, 25, 321 (1971).      
18) R.W.Hockenbury: COO-3058-44, p.4 (1973) = EXFOR10981.         
19) B.Nurpeisov et al.: Sov. At. Energy, 34, 491 (1973).          
20) B.Nurpeisov et al.: Sov. At. Energy, 39, 807 (1975).          
21) A.I.Sergachev et al.: Sov. J. Nucl. Phys., 16, 266 (1972).    
22) V.N.Nefedov: 1983 Kiev, Vol.2, p.285(1983).                   
23) R.Gwin et al.: Nucl. Sci. Eng., 87, 381 (1984).               
24) R.Gwin et al.: Nucl. Sci. Eng., 94, 365 (1986).               
25) A.S.Vorobyev et al., 2004 SantaFe, Vol.1, p.613 (2004).       
26) G.Audi: Private communication (April 2009).                   
27) J.Katakura et al.: JAERI 1343 (2001).                         
28) T.R.England et al.: LA-11151-MS (1988).                       
29) R.Sher, C.Beck: EPRI NP-1771 (1981).                          
30) Y.Kikuchi et al.: JAERI-Data/Code 99-025 (1999) in Japanese.  
31) O.Iwamoto: J. Nucl. Sci. Technol., 44, 687 (2007).            
32) E.Sh.Soukhovitskii et al.: Phys. Rev. C72, 024604 (2005).     
33) W.P.Poenitz et al.: Nucl. Sci. Eng., 78, 333 (1981).          
34) W.P.Poenitz et al.: ANL-NDM-80 (1983).                        
35) K.H.Guber et al.: Nucl. Sci. Eng., 139, 111 (2001).           
36) J.C.Hopkins, B.C.Diven: Nucl. Sci. Eng., 12, 169 (1962).      
37) W.P.Poenitz: BNL-NCS-51363, Vol.I, p.249 (1981).              
38) S.Chiba, D.L.Smith: ANL/NDM-121 (1991).                       
39) D.G.Foster Jr. et al.: Phys. Rev., C3, 576 (1971).            
40) L.Green et al.: WAPD-TM-1073 (1973).                          
41) W.P.Poenitz et al.: Nucl. Sci. Eng., 68, 358 (1978).          
42) D.C.Stupegia et al.: J. Nucl. Energy A/B, 16, 201 (1962).     
43) N.J.Pattenden et al.: Nucl. Sci. Eng., 17, 404 (1963).        
44) T.Kawano et al.: JAERI-Research 2000-004 (2000).              
45) F.Manabe et al.: Tech. Rept. Tohoku Univ., 52, 97 (1988).     
46) K.H.Guber et al.: Nucl. Sci. Eng., 135, 141 (2000).           
47) V.I.Shpakov: Yad. Konst., 1986, 19 (1986).                    
48) K.R.Zasadny et al.: Trans. Am. Nucl. Soc., 47, 425 (1984).    
49) I.D.Alkhazov et al.: 1983 Moskva, Vol.2, p.201 (1983).        
50) E.A.Zhagrov et al.: 1980 Kiev, Vol.3, p.45 (1980).            
51) A.V.Murzin et al.: 1980 Kiev, Vol.2, p.257 (1980).            
52) W.P.Poenitz: ANL-NDM-36 (1978).                               
53) V.M.Adamov et al.: Yad. Konst., 24, 8 (1977).                 
54) W.G.Yan et al.: Atom. Energy Sci. Technol., 9, 133 (1975).    
55) S.Nizamuddin et al.: Nucl. Sci. Eng., 54, 116 (1974).         
56) M.G.Cao et al.: J. Nucl. Energy,, 24, 111 (1970).             
57) D.W.Bergen: LA-4420, 21 (1970).                               
58) R.H.Iyer et al.: 1969 Roorkee, Vol.2, p.289 (1969).           
59) R.Gwin et al.: Nucl. Sci. Eng., 59, 79 (1976).                
60) D.W.Bergen et al.: Phys. Rev., 166, 1178 (1968).              
61) P.H.White et al.: 1965 Salzburg, Vol.1, p.219 (1965)          
62) G.N.Smirenkin et al.: At. Energy, 13, 366 (1962).             
63) M.S.Moore et al.: Phys. Rev., 118, 714 (1960).                
64) O.A.Shcherbakov et al.: 2001 Dubna, p.288 (2001).             
65) J.W.Meadows: Ann. Nucl. Energy, 15, 421 (1988).               
66) D.L.Shpak: Yad. Fiz., 61, 1436 (1998).                        
67) K.Kanda et al.: Radiat. Eff., 93, 233 (1986).                 
68) D.L.Shpak et al.: 1980 Kiev, Vol.3, p.35 (1980).              
69) B.I.Fursov et al.: At. Energy, 44, 236 (1978).                
70) D.L.Shpak et al.: Yad. Fiz., 21, 704 (1975).                  
71) J.W.Meadows: Nucl., Sci. Eng., 54, 317 (1974).                
72) G.W.Carlson et al.: Nucl. Sci. Eng., 66, 205 (1978).          
73) E.Pfletschinger et al.: Nucl. Sci. Eng., 40, 375 (1970).      
74) W.K.Lehto et al.: Nucl. Sci. Eng., 39, 361 (1970).            
75) V.G.Nesterov et al.: At. Energy, 24, 185 (1968).              
76) G.N.Smirenkin et al.: ICD-4 (1967).                           
77) T.Kawano et al.: JAERI-Research 2003-026 (2003).              
78) D.G.Madland, J.R.Nix: Nucl. Sci. Eng., 81, 213 (1982).        
79) T.Ohsawa, T.Shibata: 1991 Juelich Conf., p.965 (1991).        
80) F.D.Becchetti Jr., G.W.Greenlees: Phys. Rev., 182, 1190       
    (1969).                                                       
81) A.V.Ignatyuk: Sov. J. Nucl. Phys., 29, 450 (1979).            
82) V.V.Verbinski et al.: Phys. Rev., C7, 1173 (1973).            
83) L.C.Leal et al.: private communication (2008).                
84) T.Kawano, K.Shibata, JAERI-Data/Code 97-037 (1997) in         
    Japanese.                                                     
85) C.Kalbach: Phys. Rev. C33, 818 (1986).                        
86) A.J.Koning, M.C.Duijvestijn: Nucl. Phys. A744, 15 (2004).     
87) J.M.Akkermans, H.Gruppelaar: Phys. Lett. 157B, 95 (1985).     
88) P.A.Moldauer: Nucl. Phys. A344, 185 (1980).                   
89) D.L.Hill, J.A.Wheeler: Phys. Rev. 89, 1102 (1953).            
90) J.Kopecky, M.Uhl: Phys. Rev. C41, 1941 (1990).                
91) J.Kopecky, M.Uhl, R.E.Chrien: Phys. Rev. C47, 312 (1990).     
                                                                  
                                                                  
Appendix A1: Resolved resonance parameters (ENDF/B-VII.0)         
=========================================================         
MT=151 RESOLVED AND UNRESOLVED RESONANCE PARAMETER EVALUATIONS    
      L. Leal, H. Derrien, Guber, N. Larson, R. Wright,           
               and R.Spencer (ORNL)                               
                    January, 2003                                 
                                                                  
   The resonance parameter evaluation was done by Leal,           
Derrien, Guber, Larson, Wright and Spencer [LE01] using the       
multilevel R-matrix analysis code SAMMY [LA96].  The resolved     
resonance evaluation were performed in the energy range from 0 to 
600 eV. The unresolved resonance region evaluation covers the     
energy range from 600 eV to 40 keV.                               
   The evaluation included high resolution transmission data      
(GU00), fission cross section data [GU98] measured at the Oak     
Ridge Electron Linear Accelerator (ORELA), in addition to other   
experimental data.  Integral data were also included in the       
evaluation. Integral quantities and thermal values calculated     
with the U-233 resonance parameter are shown in the Table below.  
Also shown are the results of calculations using U-233 ENDF/B-VI  
evaluation and Axton standard values:                             
                                                                  
                                                                  
Quantity     ENDF/B-VI           Axton           Present Eval     
--------     ---------           -----           ------------     
Fission      531.14 +/- 1.33    530.70 +/- 1.34    530.70         
Capture       45.51 +/- 0.68     45.52 +/- 0.70     45.22         
Scattering    12.13 +/- 0.66     12.19 +/- 0.67     12.18         
Westcott ga  0.9996 +/- 0.0011  0.9995 +/- 0.0011  1.00325        
Westcott gf  0.9955 +/- 0.0014  0.9955 +/- 0.0014  1.00045        
K1 (barn)    742.60 +/- 2.40    742.25 +/- 0.0040  746.0          
                                                                  
   The following Table shows the average values of the fission    
and capture cross sections of the present evaluation compared     
to the previous ENDF-B6 evaluation in the energy range thermal    
to 600 eV.                                                        
                                                                  
     Energy Range       Fission                Capture            
         (eV)       Present   ENDF/B-VI.5   Present  ENDF/B-VI.5  
    --------------  --------  -----------   ------   -----------  
      0.001 -0.020   980.19    971.62        82.03    83.27       
      0.020 -0.050   462.03    460.02        39.84    40.21       
      0.050 -0.400   201.88    202.62        20.86    20.36       
      0.400 - 1.00   127.29    126.91        11.93     9.95       
       1.0  - 2.10   389.14    378.56        66.35    67.37       
       2.10 - 2.75   206.76    198.02       111.45   112.00       
       2.75 - 3.00    49.84     50.46         7.91     7.48       
       3.00 - 15.0   104.25    101.26        17.66    17.65       
       15.0 - 30.0    94.72     91.80        13.51    13.27       
       30.0 - 50.0    40.72     38.85         5.66     5.46       
       50.0 - 75.0    41.24     41.21         5.69     4.61       
       75.0 - 100     36.92     33.72         8.94     4.35       
       100  - 125     38.24     29.94         6.10     3.88       
       125  - 150     21.11     22.10         3.72     3.54       
       150  - 200     20.99     21.34         3.06     3.18       
       200  - 300     23.10     19.87         3.51     2.72       
       300  - 400     18.28     16.66         2.45     2.33       
       400  - 500     11.06     13.17         1.39     2.08       
       500  - 600     13.52     13.40         2.00     1.90       
----------------------------------------------------------------- 
                                                                  
    The fission and capture resonance integral calculated from    
 the present evaluation are 776.64 b and 139.66 b, respectively,  
 which compare to 760 +/ 17 b and 137 +/- 6 b reported by         
 Mughabghab.[MU85]                                                
                                                                  
            ----- REFERENCES (MF=2) -----                         
                                                                  
GU98 K. H. Guber et al., Nuc. Sci. Eng. 135, 1(2000).             
GU00 K. H. Guber et al., to be published in the Nuc. Sci. Eng.    
KA85 K. Kanda et al, Measurement of Fast Neutron Induced Fission  
     Cross Sections of 232-Th, 233-U, and 234-U Relative to       
     235-U, Nuclear Data for Basic and Applied Science, Vol. 1,   
     Santa Fe, New Mexico (May 1985).                             
LA98 N. M. Lasrson, Updated User Guide for SAMMY: Multilevel R-   
     Matrix Fits to Neutron Data Using Bayes' Equations,          
     ORNL/TM-9179/R4 (December 1998).  See also ORNL/TM-9170/R5.  
LE01 L. C. Leal, H. Derrien, J. A. Harvey, K. H. Guber, N. M.     
     Larson and R. R. Spencer, R-Matrix Resonance Analysis and    
     Statistical Properties of the Resonance Parameters of U-233  
     in the Neutron Energy Range from Thermal to 600 eV,          
     ORNL/TM-2000/372, March 2001.                                
LE96 L. C. Leal and R. Q. Wright, Assessment of the Available     
     233-U Cross Section Evaluations in the Calculation of        
     Critical Benchmark Experiments, ORNL/TM-13313R (Sept 1996).  
MU85 S. F. Mughabghab, Neutron Cross Sections, Vol. I. Part B     
     (1985).