92-U -235

 92-U -235 SAEI+      EVAL-MAR87 H.MATSUNOBU,K.HIDA,T.NAKAGAWA+   
                      DIST-SEP89 REV2-AUG93                       
----JENDL-3.2         MATERIAL 9228                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
HISTORY                                                           
87-03 NEWLY EVALUATED FOR JENDL-3 BY THE FOLLOWING EVALUATORS.    
       K.HIDA (NAIG)              GAMMA-RAY PRODUCTION DATA       
       Y.NAKAJIMA (JAERI)         RESOLVED RESONANCES             
       T.NAKAGAWA (JAERI)         UNRESOLVED RESONANCES           
       H.MATSUNOBU (SAEI)         OTHER QUANTITIES                
88-08 DATA WERE PARTLY MODIFIED TO FINAL JENDL-3 DATA.            
       NU-BAR, UNRESOLVED RESONANCE PARAMETERS.                   
89-02 FP YIELDS WERE REPLACED WITH JNDC FP DECAY FILE VERSION-2.  
  DATA WERE COMPILED IN ENDF-5 FORMAT BY T.NAKAGAWA (JAERI)       
93-12 JENDL-3.2.                                                  
       H.MATSUNOBU (SAEI): NU-P, FISSION CROSS SECTION            
       T.OHSAWA (KINKI UNIV.): FISSION SPECTRUM                   
       Y.KIKUCHI AND T.NAKAGAWA (JAERI): RESONANCE PARAMETERS     
      COMPILED BY T.NAKAGAWA (NDC/JAERI)                          
                                                                  
     *****   MODIFIED PARTS FOR JENDL-3.2   ********************  
      (1,452), (1,456)    NEW EVALUATION OF (1,456)               
      (2,151)             RESOLVED AND UNRESOLVED RESONANCE       
                          PARAMETERS UP TO 30 KEV                 
      (3,2), (3,18)       ABOVE 13 MEV                            
      (5,18)              WITH MODIFIED MADLAND-NIX FORMULA       
     ***********************************************************  
                                                                  
                                                                  
MF=1  GENERAL INFORMATION                                         
  MT=451  COMMENTS AND DICTIONARY                                 
  MT=452  TOTAL NUMBER OF NEUTRONS PER FISSION                    
      SUM OF NU-P (MT=456) AND NU-D (MT=455).                     
  MT=455  DELAYED NEUTRON DATA                                    
      EVALUATED ON THE BASIS OF THE EXPERIMENTAL DATA BY KEEPIN ET
      AL. /1/, KEEPIN /2/, MASTERS ET AL. /3/, CONANT AND PALMEDO 
      /4/, EVANS AND THORPE /5/, COX /6/, BESANT ET AL. /7/ AND   
      SYNETOS AND WILLIAMS /8/.                                   
  MT=456  NUMBER OF PROMPT NEUTRONS                               
      EVALUATED ON THE BASIS OF THE FOLLOWING EXPERIMENTAL DATA:  
          BELOW 60 EV          GWIN ET AL./9/                     
          20 EV   - 500 EV     GWIN ET AL./10/                    
          0.5 KEV - 5.15 MEV   GWIN ET AL./11/                    
          5.15 MEV- 15 MEV     FREHAUT ET AL./12/                 
          15 MEV  - 20 MEV     FREHAUT ET AL./13/, HOWE /14/      
      THE STANDARD VALUE OF 3.756 OF CF-252 NU-P WAS USED IN THE  
      PRESENT EVALUATION.                                         
                                                                  
MF=2  RESONANCE PARAMETERS                                        
  MT=151                                                          
  1) RESOLVED RESONANCES : BELOW 500 EV                           
      REICH-MOORE PARAMETERS IN ENDF/B-VI/15,16/ WAS ADOPTED.     
      AVERAGE CAPTURE WIDTH OF 0.035 EV WAS INCREASED TO 0.0385 EV
      IN THE ENERGY REGION ABOVE 300 EV.                          
                                                                  
  2) UNRESOLVED RESONANCE PARAMETERS : 500 EV - 30 KEV            
      THE EVALUATED TOTAL, CAPTURE AND FISSION CROSS SECTIONS WERE
      FITTED BY ADJUSTING S0, S1 AND FISSION WIDTH  THE FISSION   
      CROSS SECTION WAS BASED ON THE EXPERIMENTAL DATA OF WESTON  
      AND TODD /17/.  THE CAPTURE CROSS SECTION WAS CALCULATED AS 
      (SIG-F)*ALPHA, WHERE ALPHA VALUES WERE DETERMINED FROM      
      EXPERIMENTAL DATA OF MURADYAN ET AL. /18/ THE TOTAL CROSS   
      SECTION WAS EVALUATED ON THE BASIS OF THE EXPERIMENTAL DATA 
      BY UTTLEY ET AL. /19/, BOECKOFF ET AL.  /20/, MICHAUDON ET  
      AL. /21/ AND DERRIEN /22/                                   
                                                                  
      2200-M/S CROSS SECTIONS AND CALCULATED RES. INTEGRALS.      
                      2200 M/S        RES. INTEG.                 
         ELASTIC       15.03 B             -                      
         FISSION      584.4  B            279 B                   
         CAPTURE       98.81 B            134 B                   
         TOTAL        698.2  B             -                      
                                                                  
MF=3  NEUTRON CROSS SECTIONS                                      
  BELOW 30 KEV: NO BACKGROUND DATA FOR RESONANCE PARAMETERS ARE   
                GIVEN.                                            
  ABOVE 30 KEV: DATA WERE EVALUATED AS FOLLOWS.                   
  MT=1    TOTAL                                                   
      EVALUATED ON THE BASIS OF THE EXPERIMENTAL DATA BY UTTLEY ET
      AL. /19/, BOECKOFF ET AL. /20/, SCHWARTZ ET AL. /23/, GREEN 
      ET AL. /24/, FOSTER AND GLASGOW /25/, POENITZ ET AL. /26/,  
      AND POENITZ AND WHALEN /27/.                                
  MT=2    ELASTIC SCATTERING                                      
      EVALUATED ON THE BASIS OF THE EXPERIMENTAL DATA BY SMITH    
      /28/, SMITH AND WHALEN /29/ AND KNITTER ET AL. /30/ IN THE  
      ENERGY RANGE FROM 0.3 TO 2.3 MEV.  IN THE REMAINING ENERGY  
      RANGE IT WAS DERIVED BY SUBTRACTING SUM OF PARTIAL CROSS    
      SECTIONS FROM TOTAL CROSS SECTION.                          
  MT=4,51-79,91,251 INELASTIC SCATTERING CROSS SECTION AND MU-BAR 
      EVALUATED ON THE BASIS OF EXPERIMENTAL DATA AND CALCULATION 
      WITH OPTICAL AND STATISTICAL MODELS, AND COUPLED CHANNEL    
      THEORY TAKING INTO ACCOUNT OF DEFORMATION OF NUCLEUS.  THE  
      CALCULATED INELASTIC SCATTERING CROSS SECTIONS WERE         
      DECREASED BY FACTOR OF 0.9 BELOW ABOUT 2 MEV SO AS TO BE IN 
      AGREEMENT WITH SMITH ET AL. /31/.                           
                                                                  
      DEFORMED OPTICAL POTENTIAL PARAMETERS WERE ADOPTED FROM THE 
      RECOMMENDATION BY HAOUAT ET AL. /32/.                       
         V  = 46.4  - 0.3*EN,  WS = 3.3 + 0.4*EN, VSO= 6.2  (MEV) 
         R0 = 1,26,            RS = 1.26,         RSO= 1.12  (FM) 
         A0 = 0.63,            B  = 0.52,         ASO= 0.47  (FM) 
         BETA-2 = 0.22,    BETA-4 = 0.08                          
      THE SPHERICAL OPTICAL POTENTIAL PARAMETERS WERE OBTAINED BY 
      FITTING THE EXPERIMENTAL DATA OF THE TOTAL CROSS SECTION.   
         V  = 40.90 - 0.04*EN, WS = 6.5 + 0.25*EN,VSO= 7.0  (MEV) 
         R0 = 1.312,           RS = 1.375,        RSO= 1.320 (FM) 
         A  = 0.490,           B  = 0.454,        AO = 0.470 (FM) 
                                                                  
      STATISTICAL MODEL CALCULATION WITH CASTHY CODE /33/.        
         COMPETING PROCESSES : FISSION (N,2N), (N,3N), (N,4N).    
         LEVEL FLUCTUATION WAS CONSIDERED.                        
                                                                  
      THE LEVEL SCHEME TAKEN FROM REFS./34,35/.                   
               NO.     ENERGY(KEV)   SPIN-PARITY                  
               G.S.         0.0        7/2 -                      
                1           0.075      1/2 +                      
                2          13.038      3/2 +                      
                3          46.347      9/2 -                      
                4          51.697      5/2 +                      
                5          81.732      7/2 +                      
                6         103.2       11/2 -                      
                7         129.292      5/2 +                      
                8         150.4        9/2 +                      
                9         170.7       13/2 -                      
               10         171.378      7/2 +                      
               11         197.1       11/2 +                      
               12         225.40       9/2 +                      
               13         249.1       15/2 -                      
               14         291.1       11/2 +                      
               15         294.7       13/2 +                      
               16         332.818      5/2 +                      
               17         338.8       17/2 -                      
               18         357.2       15/2 +                      
               19         367.05       7/2 +                      
               20         368.8       13/2 +                      
               21         393.184      3/2 +                      
               22         414.8        9/2 +                      
               23         426.71       5/2 +                      
               24         445.7        7/2 +                      
               25         474.27       7/2 +                      
               26         510.0        9/2 +                      
               27         533.2        9/2 +                      
               28         607.7       11/2 +                      
               29         633.04       5/2 -                      
      CONTINUUM LEVELS ASSUMED ABOVE 650 KEV.                     
      THE LEVEL DENSITY PARAMETERS : GILBERT AND CAMERON /36/.    
                                                                  
  MT=16,17,37 (N,2N), (N,3N), (N,4N)                              
      EVALUATED ON THE BASIS OF THE FOLLOWING EXPERIMENTAL DATA   
      AND CALCULATION WITH EVAPORATION MODEL.                     
         (N,2N)            : FREHAUT ET AL. /37/                  
         (N,3N) AND (N,4N) : VEESER AND ARTHUR /38/               
  MT=18   FISSION                                                 
      DERIVED WITH SIMULTANEOUS EVALUATION/47/ ON THE BASIS OF THE
      CAPTURE CROSS SECTIONS OF AU-197 AND U-238, THE FISSION     
      CROSS SECTIONS OF U-235, -238, PU-239, -240 AND -241 IN THE 
      ENERGY RANGE FROM 50 KEV TO 20 MEV.  RESULTS WERE ADOPTED IN
      THE ENERGY RANGE UP TO 13 MEV.  EXPERIMENTAL DATA OF U-235  
      CONSIDERED IN THIS EVALUATION ARE AS FOLLOWS:               
         PEREZ ET AL. /39/, POENITZ /40,41/, CZIRR AND SIDHU      
         /42,43,44/, SZABO AND MARQUETTE /45/, BARTON ET AL.      
         /46/, CANCE AND GRENIER /47,48/, CARLSON AND PATRICK     
         /49/, KARI /50/, ADAMOV ET AL. /51/, ARLT ET AL. /52,    
         53/, WASSON ET AL. /54,55/, LI ET AL. /56/, MAHDAVI ET   
         AL. /57/, CARLSON AND BEHRENS /58/, CORVI ET AL. /59/,   
         DUSHIN ET AL. /60/ AND WESTON AND TODD /17/.             
      ABOVE 13 MEV, BASED ON THE EXPERIMENTAL DATA OF CARLSON ET  
      AL./61/.                                                    
  MT=102  CAPTURE                                                 
      DERIVED FROM THE EVALUATED ALPHA VALUE AND FISSION CROSS    
      SECTION BELOW 1 MEV.  CALCULATED WITH CASTHY ABOVE 1 MEV.   
                                                                  
      ALPHA VALUE WAS EVALUATED ON THE BASIS OF THE EXPERIMENTAL  
      DATA BY HOPKINS AND DIVEN /62/, MURADYAN /18/ AND CORVI ET  
      AL. /59/                                                    
                                                                  
MF=4  ANGULAR DISTRIBUTIONS OF SECONDARY NEUTRONS                 
  MT=2, 51-79, 91     CALCULATED WITH CASTHY AND ECIS CODES.      
  MT=16,17,18,37      ISOTROPIC IN THE LAB SYSTEM.                
                                                                  
MF=5  ENERGY DISTRIBUTIONS OF SECONDARY NEUTRONS                  
  MT=16,17,37,91                                                  
      CALCULATED WITH PEGASUS/63/ ON THE BASIS OF PREEQUILIBRIUM  
      AND MULTI-STEP EVAPORATION MODEL.                           
  MT=18                                                           
     DISTRIBUTIONS WERE CALCULATED WITH THE MODIFIED MADLAND-NIX  
     MODEL/64,65/.  THE COMPOUND NUCLEUS FORMATION CROSS SECTIONS 
     FOR FISSION FRAGMENTS (FF) WERE CALCULATED USING BECCHETTI-  
     GREENLEES POTENTIAL/66/.  UP TO 4TH-CHANCE-FISSION WERE      
     CONSIDERED AT HIGH INCIDENT NEUTTRON ENERGIES.  THE IGNATYUK 
     FORMULA/67/ WERE USED TO GENERATE THE LEVEL DENSITY          
     PARAMETERS.                                                  
       PARAMETERS ADOPTED:                                        
           TOTAL AVERAGE FF KINETIC ENERGY = 169.9 - 171.8 MEV    
           AVERAGE ENERGY RELEASE          = 185.896 MEV          
           AVERAGE MASS NUMBER OF LIGHT FF =  96                  
           AVERAGE MASS NUMBER OF HEAVY FF = 140                  
           LEVEL DENSITY OF THE LIGHT FF   =  9.76 -  9.80        
           LEVEL DENSITY OF THE HEAVY FF   = 11.34 - 11.48        
           RATIO OF NUCLEAR TEMPERATURE                           
                     FOR LIGHT TO HEAVY FF = 0.9 - 1.05           
       NOTE THAT THE PARAMETERS VARY WITH THE INCIDENT ENERGY     
       WITHIN THE INDICATED RANGE.                                
  MT=455                                                          
      TAKEN FROM SAPHIER ET AL. /68/                              
                                                                  
MF=12  PHOTON PRODUCTION MULTIPLICITIES (OPTION 1)                
       GIVEN FOR THE FOLLOWING SECTIONS BELOW 369.579 KEV         
  MT=18    FISSION                                                
      THE THERMAL NEUTRON-INDUCED FISSION GAMMA SPECTRUM MEASURED 
      BY VERBINSKI /69/ WAS ADOPTED.                              
  MT=51-69 INELASTIC SCATTERING                                   
      THE PHOTON BRANCHING DATA TAKEN FROM /35/ WERE CONVERTED TO 
      THE PHOTON MULTIPLICITIES.                                  
  MT=102   CAPTURE                                                
      CALCULATED WITH GNASH /70/, WHERE THE PYGMY RESONANCE WAS   
      INTRODUCED /71/.                                            
                                                                  
MF=13  PHOTON PRODUCTION CROSS SECTIONS                           
    MT=3   NON-ELASTIC                                            
      CALCULATED WITH GNASH /70/ ABOVE 369.579 KEV.               
      VERBINSKI'S DATA /69/ WERE USED UP TO 20 MEV.               
                                                                  
MF=14  PHOTON ANGULAR DISTRIBUTIONS                               
    MT=3,18,51-69,102                                             
      ISOTROPIC DISTRIBUTIONS WERE ASSUMED.                       
                                                                  
MF=15  CONTINUOUS PHOTON ENERGY SPECTRA                           
    MT=3,102                                                      
      CALCULATED WITH GNASH /70/                                  
    MT=18                                                         
      EXPERIMENTAL DATA BY VERBINSKI /69/ WERE ADOPTED.           
                                                                  
REFERENCES                                                        
 1) KEEPIN G.R. ET AL.: J. NUCL. ENERGY, 6, 1 (1957).             
 2) KEEPIN G.R.: LA-4320 (1969).                                  
 3) MASTERS C.F. ET AL.: NUCL. SCI. ENG., 36, 202 (1969).         
 4) CONANT J.F. AND PALMEDO P.F.: NUCL. SCI. ENG., 44, 173(1971). 
 5) EVANS A.E. AND THORPE M.M.: NUCL. SCI. ENG., 50, 80 (1973).   
 6) COX S.A.: ANL/NDM-5 (1974).                                   
 7) BESANT C.B. ET AL.: BRITISH NUCL. ENERGY SOC., 16, 161(1977). 
 8) SYNETOS S. AND WILLIAMS J.G.: INDC(NDS)-107, 183 (1979).      
 9) GWIN R. ET AL.: NUCL. SCI. ENG., 87, 381 (1984).              
10) GWIN R. ET AL: ORNL-TM-6246 (1978).                           
11) GWIN R. ET AL: NUCL. SCI. ENG., 94, 365 (1986).               
12) FREHAUT J. ET AL.: 1982 ANTWERP CONF., 78 (1982).             
13) FREHAUT J. ET AL.: EXFOR 20506.002 (1980),                    
                       EXFOR 21685.002 (1980).                    
14) HOWE R.E.: NUCL. SCI. ENG., 86, 157 (1984).                   
15) LEAL L.C. ET AL.: NUCL. SCI. ENG., 109, 1 (1991).             
16) WESTON L.W. ET AL.: ENDF/B-VI, REVISION 2, MAT=9228 (1993).   
17) WESTON L.W. AND TODD J.H.: NUCL. SCI. ENG., 88, 567(1984).    
18) MURADYAN G.V. ET AL.: 1979 KNOXVILLE CONF., 488 (1979).       
19) UTTLEY C.A. ET AL.: 1966 PARIS CONF., VOL.1, P.165 (1966).    
20) BOECKOFF K.H. ET AL.: J. NUCL. ENERGY, 26, 91 (1972).         
21) MICHAUDON A. ET AL.: NUCL. PHYS., 69, 545 (1965).             
22) DERRIEN H.: PRIVATE COMMUNICATION TO CCDN (1966).             
23) SCHWARTZ R.B. ET AL.: NUCL. SCI. EEG., 54, 322 (1974).        
24) GREEN F.L. ET AL.: WAPD-TM-1073 (1973).                       
25) FOSTER D.G. AND GLASGOW D.W.:PHYS. REV., C3, 576 (1971).      
26) POENITZ W.P. ET AL.: NUCL. SCI. ENG., 78, 333 (1981).         
27) POENITZ W.P. AND WHALEN J.F.: ANL/NDM-80 (1983).              
28) SMITH A.B.: NUCL. SCI. ENG., 18, 126 (1964).                  
29) SMITH A.B. AND WHALEN J.F.: PHYS. REV. LETTERS, 16, 526(1966).
30) KNITTER H.H. ET AL.: ZEIT. PHYSIK, 257, 108 (1972).           
31) SMITH A.B. ET AL.: 1982 ANTWERP CONF., 39 (1982).             
32) HAOUAT G. ET AL.: NUCL. SCI. ENG., 81, 491 (1982).            
33) IGARASI S. AND FUKAHORI T.: JAERI 1321 (1991).                
34) LEDERER C.M. AND SHIRLEY V.S.:  TABLE OF ISOTOPES, 7TH ED.    
35) SCHMORAK M.R.: NUCL. DATA SHEETS, 40, 1 (1983).               
36) GILBERT A. AND CAMERON A.G.W.: CAN. J. PHYS., 43, 1446 (1965).
37) FREHAUT J. ET AL.: NUCL. SCI. ENG., 74, 29 (1980).            
38) VEESER L.R. AND ARTHER E.D.: 1978 HARWELL CONF., P.1054(1978).
39) PEREZ R.B. ET AL.: NUCL. SCI. ENG., 55, 203 (1974).           
40) POENITZ W.P.: NUCL. SCI. ENG., 53, 370 (1974).                
41) POENITZ W.P.: NUCL. SCI. ENG., 64, 894 (1977).                
42) CZIRR J.B. AND SIDHU G.S.: NUCL. SCI. ENG., 57, 18 (1975).    
43) CZIRR J.B. AND SIDHU G.S.: NUCL. SCI. ENG., 58, 371 (1975).   
44) CZIRR J.B. AND SIDHU G.S.: NUCL. SCI. ENG., 60, 383 (1976).   
45) SZABO I. AND MARQUETTE G.P.: ANL-76-90, P.208 (1976).         
46) BARTON D.M. ET AL.: NUCL. SCI. ENG., 60, 369 (1976).          
47) CANCE M. AND GRENIER G.: NUCL. SCI. ENG., 68, 197 (1978).     
48) CANCE M. AND GRENIER G.: CEA-N-2194 (1981).                   
49) CARLSON A.D. AND PATRICK B.H.: 1978 HARWELL CONF., 880(1978). 
50) KARI K.: KFK-2673 (1978).                                     
51) ADAMOV V.M. ET AL.: 1979 KNOXVILLE CONF., 995 (1979).         
52) ARLT R. ET AL.: 1979 KNOXVILLE CONF., 990 (1979).             
53) ARLT R. ET AL.: 1983 SMOLENICE CONF., 174 (1983).             
54) WASSON O.A. ET AL.: NUCL. SCI. ENG., 80, 282 (1982).          
55) WASSON O.A. ET AL.: NUCL. SCI. ENG., 81, 196 (1982).          
56) LI JINGWEN ET AL.: 1982 ANTWERP CONF., 55 (1982).             
57) MAHDAVI M. ET AL.: 1982 ANTWERP CONF., 58 (1982).             
58) CARLSON A.D. AND BEHRENS J.W.: 1982 ANTWERP CONF., 456(1982). 
59) CORVI F. ET AL.: NEANDC(E) 232U, VOL. 3, 5 (1981).            
60) DUSHIN V.N. ET AL.: SOV. ATOM. ENERGY, 55, 656 (1984).        
61) CARLSON A.D. ET AL.: 1991 JUELICH CONF., 518 (1992).          
62) HOPKINS J.C. AND DIVEN B.C.: NUCL. SCI. ENG., 12, 169 (1962). 
63) IIJIMA S. ET AL.: JAERI-M 87-025, P. 337 (1987).              
64) MADLAND D.G. AND NIX J.R.: NUCL. SCI. ENG., 81, 213 (1982).   
65) OHSAWA T. AND SHIBATA T.: 1991 JUELICH CONF., 965 (1992).     
66) BECCHETTI JR.F.D. AND GREENLEES G.W.: PHYS. REV., 182, 1190   
    (1969).                                                       
67) IGNATYUK A.V.: SOV. J. NUCL. PHYS., 29, 450 (1979).           
68) SAPHIER D. ET AL.: NUCL. SCI. ENG., 62, 660 (1977).           
69) VERBINSKI V.V. ET AL.: PHYS. REV., C7, 1173 (1973).           
70) YOUNG P.G. ET AL.: LA-6947 (1977).                            
71) HIDA K.: JAERI-M 85-035, P. 166, (1985).