92-U -235
92-U -235 SAEI+ EVAL-MAR87 H.MATSUNOBU,K.HIDA,T.NAKAGAWA+
DIST-SEP89 REV2-AUG93
----JENDL-3.2 MATERIAL 9228
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
HISTORY
87-03 NEWLY EVALUATED FOR JENDL-3 BY THE FOLLOWING EVALUATORS.
K.HIDA (NAIG) GAMMA-RAY PRODUCTION DATA
Y.NAKAJIMA (JAERI) RESOLVED RESONANCES
T.NAKAGAWA (JAERI) UNRESOLVED RESONANCES
H.MATSUNOBU (SAEI) OTHER QUANTITIES
88-08 DATA WERE PARTLY MODIFIED TO FINAL JENDL-3 DATA.
NU-BAR, UNRESOLVED RESONANCE PARAMETERS.
89-02 FP YIELDS WERE REPLACED WITH JNDC FP DECAY FILE VERSION-2.
DATA WERE COMPILED IN ENDF-5 FORMAT BY T.NAKAGAWA (JAERI)
93-12 JENDL-3.2.
H.MATSUNOBU (SAEI): NU-P, FISSION CROSS SECTION
T.OHSAWA (KINKI UNIV.): FISSION SPECTRUM
Y.KIKUCHI AND T.NAKAGAWA (JAERI): RESONANCE PARAMETERS
COMPILED BY T.NAKAGAWA (NDC/JAERI)
***** MODIFIED PARTS FOR JENDL-3.2 ********************
(1,452), (1,456) NEW EVALUATION OF (1,456)
(2,151) RESOLVED AND UNRESOLVED RESONANCE
PARAMETERS UP TO 30 KEV
(3,2), (3,18) ABOVE 13 MEV
(5,18) WITH MODIFIED MADLAND-NIX FORMULA
***********************************************************
MF=1 GENERAL INFORMATION
MT=451 COMMENTS AND DICTIONARY
MT=452 TOTAL NUMBER OF NEUTRONS PER FISSION
SUM OF NU-P (MT=456) AND NU-D (MT=455).
MT=455 DELAYED NEUTRON DATA
EVALUATED ON THE BASIS OF THE EXPERIMENTAL DATA BY KEEPIN ET
AL. /1/, KEEPIN /2/, MASTERS ET AL. /3/, CONANT AND PALMEDO
/4/, EVANS AND THORPE /5/, COX /6/, BESANT ET AL. /7/ AND
SYNETOS AND WILLIAMS /8/.
MT=456 NUMBER OF PROMPT NEUTRONS
EVALUATED ON THE BASIS OF THE FOLLOWING EXPERIMENTAL DATA:
BELOW 60 EV GWIN ET AL./9/
20 EV - 500 EV GWIN ET AL./10/
0.5 KEV - 5.15 MEV GWIN ET AL./11/
5.15 MEV- 15 MEV FREHAUT ET AL./12/
15 MEV - 20 MEV FREHAUT ET AL./13/, HOWE /14/
THE STANDARD VALUE OF 3.756 OF CF-252 NU-P WAS USED IN THE
PRESENT EVALUATION.
MF=2 RESONANCE PARAMETERS
MT=151
1) RESOLVED RESONANCES : BELOW 500 EV
REICH-MOORE PARAMETERS IN ENDF/B-VI/15,16/ WAS ADOPTED.
AVERAGE CAPTURE WIDTH OF 0.035 EV WAS INCREASED TO 0.0385 EV
IN THE ENERGY REGION ABOVE 300 EV.
2) UNRESOLVED RESONANCE PARAMETERS : 500 EV - 30 KEV
THE EVALUATED TOTAL, CAPTURE AND FISSION CROSS SECTIONS WERE
FITTED BY ADJUSTING S0, S1 AND FISSION WIDTH THE FISSION
CROSS SECTION WAS BASED ON THE EXPERIMENTAL DATA OF WESTON
AND TODD /17/. THE CAPTURE CROSS SECTION WAS CALCULATED AS
(SIG-F)*ALPHA, WHERE ALPHA VALUES WERE DETERMINED FROM
EXPERIMENTAL DATA OF MURADYAN ET AL. /18/ THE TOTAL CROSS
SECTION WAS EVALUATED ON THE BASIS OF THE EXPERIMENTAL DATA
BY UTTLEY ET AL. /19/, BOECKOFF ET AL. /20/, MICHAUDON ET
AL. /21/ AND DERRIEN /22/
2200-M/S CROSS SECTIONS AND CALCULATED RES. INTEGRALS.
2200 M/S RES. INTEG.
ELASTIC 15.03 B -
FISSION 584.4 B 279 B
CAPTURE 98.81 B 134 B
TOTAL 698.2 B -
MF=3 NEUTRON CROSS SECTIONS
BELOW 30 KEV: NO BACKGROUND DATA FOR RESONANCE PARAMETERS ARE
GIVEN.
ABOVE 30 KEV: DATA WERE EVALUATED AS FOLLOWS.
MT=1 TOTAL
EVALUATED ON THE BASIS OF THE EXPERIMENTAL DATA BY UTTLEY ET
AL. /19/, BOECKOFF ET AL. /20/, SCHWARTZ ET AL. /23/, GREEN
ET AL. /24/, FOSTER AND GLASGOW /25/, POENITZ ET AL. /26/,
AND POENITZ AND WHALEN /27/.
MT=2 ELASTIC SCATTERING
EVALUATED ON THE BASIS OF THE EXPERIMENTAL DATA BY SMITH
/28/, SMITH AND WHALEN /29/ AND KNITTER ET AL. /30/ IN THE
ENERGY RANGE FROM 0.3 TO 2.3 MEV. IN THE REMAINING ENERGY
RANGE IT WAS DERIVED BY SUBTRACTING SUM OF PARTIAL CROSS
SECTIONS FROM TOTAL CROSS SECTION.
MT=4,51-79,91,251 INELASTIC SCATTERING CROSS SECTION AND MU-BAR
EVALUATED ON THE BASIS OF EXPERIMENTAL DATA AND CALCULATION
WITH OPTICAL AND STATISTICAL MODELS, AND COUPLED CHANNEL
THEORY TAKING INTO ACCOUNT OF DEFORMATION OF NUCLEUS. THE
CALCULATED INELASTIC SCATTERING CROSS SECTIONS WERE
DECREASED BY FACTOR OF 0.9 BELOW ABOUT 2 MEV SO AS TO BE IN
AGREEMENT WITH SMITH ET AL. /31/.
DEFORMED OPTICAL POTENTIAL PARAMETERS WERE ADOPTED FROM THE
RECOMMENDATION BY HAOUAT ET AL. /32/.
V = 46.4 - 0.3*EN, WS = 3.3 + 0.4*EN, VSO= 6.2 (MEV)
R0 = 1,26, RS = 1.26, RSO= 1.12 (FM)
A0 = 0.63, B = 0.52, ASO= 0.47 (FM)
BETA-2 = 0.22, BETA-4 = 0.08
THE SPHERICAL OPTICAL POTENTIAL PARAMETERS WERE OBTAINED BY
FITTING THE EXPERIMENTAL DATA OF THE TOTAL CROSS SECTION.
V = 40.90 - 0.04*EN, WS = 6.5 + 0.25*EN,VSO= 7.0 (MEV)
R0 = 1.312, RS = 1.375, RSO= 1.320 (FM)
A = 0.490, B = 0.454, AO = 0.470 (FM)
STATISTICAL MODEL CALCULATION WITH CASTHY CODE /33/.
COMPETING PROCESSES : FISSION (N,2N), (N,3N), (N,4N).
LEVEL FLUCTUATION WAS CONSIDERED.
THE LEVEL SCHEME TAKEN FROM REFS./34,35/.
NO. ENERGY(KEV) SPIN-PARITY
G.S. 0.0 7/2 -
1 0.075 1/2 +
2 13.038 3/2 +
3 46.347 9/2 -
4 51.697 5/2 +
5 81.732 7/2 +
6 103.2 11/2 -
7 129.292 5/2 +
8 150.4 9/2 +
9 170.7 13/2 -
10 171.378 7/2 +
11 197.1 11/2 +
12 225.40 9/2 +
13 249.1 15/2 -
14 291.1 11/2 +
15 294.7 13/2 +
16 332.818 5/2 +
17 338.8 17/2 -
18 357.2 15/2 +
19 367.05 7/2 +
20 368.8 13/2 +
21 393.184 3/2 +
22 414.8 9/2 +
23 426.71 5/2 +
24 445.7 7/2 +
25 474.27 7/2 +
26 510.0 9/2 +
27 533.2 9/2 +
28 607.7 11/2 +
29 633.04 5/2 -
CONTINUUM LEVELS ASSUMED ABOVE 650 KEV.
THE LEVEL DENSITY PARAMETERS : GILBERT AND CAMERON /36/.
MT=16,17,37 (N,2N), (N,3N), (N,4N)
EVALUATED ON THE BASIS OF THE FOLLOWING EXPERIMENTAL DATA
AND CALCULATION WITH EVAPORATION MODEL.
(N,2N) : FREHAUT ET AL. /37/
(N,3N) AND (N,4N) : VEESER AND ARTHUR /38/
MT=18 FISSION
DERIVED WITH SIMULTANEOUS EVALUATION/47/ ON THE BASIS OF THE
CAPTURE CROSS SECTIONS OF AU-197 AND U-238, THE FISSION
CROSS SECTIONS OF U-235, -238, PU-239, -240 AND -241 IN THE
ENERGY RANGE FROM 50 KEV TO 20 MEV. RESULTS WERE ADOPTED IN
THE ENERGY RANGE UP TO 13 MEV. EXPERIMENTAL DATA OF U-235
CONSIDERED IN THIS EVALUATION ARE AS FOLLOWS:
PEREZ ET AL. /39/, POENITZ /40,41/, CZIRR AND SIDHU
/42,43,44/, SZABO AND MARQUETTE /45/, BARTON ET AL.
/46/, CANCE AND GRENIER /47,48/, CARLSON AND PATRICK
/49/, KARI /50/, ADAMOV ET AL. /51/, ARLT ET AL. /52,
53/, WASSON ET AL. /54,55/, LI ET AL. /56/, MAHDAVI ET
AL. /57/, CARLSON AND BEHRENS /58/, CORVI ET AL. /59/,
DUSHIN ET AL. /60/ AND WESTON AND TODD /17/.
ABOVE 13 MEV, BASED ON THE EXPERIMENTAL DATA OF CARLSON ET
AL./61/.
MT=102 CAPTURE
DERIVED FROM THE EVALUATED ALPHA VALUE AND FISSION CROSS
SECTION BELOW 1 MEV. CALCULATED WITH CASTHY ABOVE 1 MEV.
ALPHA VALUE WAS EVALUATED ON THE BASIS OF THE EXPERIMENTAL
DATA BY HOPKINS AND DIVEN /62/, MURADYAN /18/ AND CORVI ET
AL. /59/
MF=4 ANGULAR DISTRIBUTIONS OF SECONDARY NEUTRONS
MT=2, 51-79, 91 CALCULATED WITH CASTHY AND ECIS CODES.
MT=16,17,18,37 ISOTROPIC IN THE LAB SYSTEM.
MF=5 ENERGY DISTRIBUTIONS OF SECONDARY NEUTRONS
MT=16,17,37,91
CALCULATED WITH PEGASUS/63/ ON THE BASIS OF PREEQUILIBRIUM
AND MULTI-STEP EVAPORATION MODEL.
MT=18
DISTRIBUTIONS WERE CALCULATED WITH THE MODIFIED MADLAND-NIX
MODEL/64,65/. THE COMPOUND NUCLEUS FORMATION CROSS SECTIONS
FOR FISSION FRAGMENTS (FF) WERE CALCULATED USING BECCHETTI-
GREENLEES POTENTIAL/66/. UP TO 4TH-CHANCE-FISSION WERE
CONSIDERED AT HIGH INCIDENT NEUTTRON ENERGIES. THE IGNATYUK
FORMULA/67/ WERE USED TO GENERATE THE LEVEL DENSITY
PARAMETERS.
PARAMETERS ADOPTED:
TOTAL AVERAGE FF KINETIC ENERGY = 169.9 - 171.8 MEV
AVERAGE ENERGY RELEASE = 185.896 MEV
AVERAGE MASS NUMBER OF LIGHT FF = 96
AVERAGE MASS NUMBER OF HEAVY FF = 140
LEVEL DENSITY OF THE LIGHT FF = 9.76 - 9.80
LEVEL DENSITY OF THE HEAVY FF = 11.34 - 11.48
RATIO OF NUCLEAR TEMPERATURE
FOR LIGHT TO HEAVY FF = 0.9 - 1.05
NOTE THAT THE PARAMETERS VARY WITH THE INCIDENT ENERGY
WITHIN THE INDICATED RANGE.
MT=455
TAKEN FROM SAPHIER ET AL. /68/
MF=12 PHOTON PRODUCTION MULTIPLICITIES (OPTION 1)
GIVEN FOR THE FOLLOWING SECTIONS BELOW 369.579 KEV
MT=18 FISSION
THE THERMAL NEUTRON-INDUCED FISSION GAMMA SPECTRUM MEASURED
BY VERBINSKI /69/ WAS ADOPTED.
MT=51-69 INELASTIC SCATTERING
THE PHOTON BRANCHING DATA TAKEN FROM /35/ WERE CONVERTED TO
THE PHOTON MULTIPLICITIES.
MT=102 CAPTURE
CALCULATED WITH GNASH /70/, WHERE THE PYGMY RESONANCE WAS
INTRODUCED /71/.
MF=13 PHOTON PRODUCTION CROSS SECTIONS
MT=3 NON-ELASTIC
CALCULATED WITH GNASH /70/ ABOVE 369.579 KEV.
VERBINSKI'S DATA /69/ WERE USED UP TO 20 MEV.
MF=14 PHOTON ANGULAR DISTRIBUTIONS
MT=3,18,51-69,102
ISOTROPIC DISTRIBUTIONS WERE ASSUMED.
MF=15 CONTINUOUS PHOTON ENERGY SPECTRA
MT=3,102
CALCULATED WITH GNASH /70/
MT=18
EXPERIMENTAL DATA BY VERBINSKI /69/ WERE ADOPTED.
REFERENCES
1) KEEPIN G.R. ET AL.: J. NUCL. ENERGY, 6, 1 (1957).
2) KEEPIN G.R.: LA-4320 (1969).
3) MASTERS C.F. ET AL.: NUCL. SCI. ENG., 36, 202 (1969).
4) CONANT J.F. AND PALMEDO P.F.: NUCL. SCI. ENG., 44, 173(1971).
5) EVANS A.E. AND THORPE M.M.: NUCL. SCI. ENG., 50, 80 (1973).
6) COX S.A.: ANL/NDM-5 (1974).
7) BESANT C.B. ET AL.: BRITISH NUCL. ENERGY SOC., 16, 161(1977).
8) SYNETOS S. AND WILLIAMS J.G.: INDC(NDS)-107, 183 (1979).
9) GWIN R. ET AL.: NUCL. SCI. ENG., 87, 381 (1984).
10) GWIN R. ET AL: ORNL-TM-6246 (1978).
11) GWIN R. ET AL: NUCL. SCI. ENG., 94, 365 (1986).
12) FREHAUT J. ET AL.: 1982 ANTWERP CONF., 78 (1982).
13) FREHAUT J. ET AL.: EXFOR 20506.002 (1980),
EXFOR 21685.002 (1980).
14) HOWE R.E.: NUCL. SCI. ENG., 86, 157 (1984).
15) LEAL L.C. ET AL.: NUCL. SCI. ENG., 109, 1 (1991).
16) WESTON L.W. ET AL.: ENDF/B-VI, REVISION 2, MAT=9228 (1993).
17) WESTON L.W. AND TODD J.H.: NUCL. SCI. ENG., 88, 567(1984).
18) MURADYAN G.V. ET AL.: 1979 KNOXVILLE CONF., 488 (1979).
19) UTTLEY C.A. ET AL.: 1966 PARIS CONF., VOL.1, P.165 (1966).
20) BOECKOFF K.H. ET AL.: J. NUCL. ENERGY, 26, 91 (1972).
21) MICHAUDON A. ET AL.: NUCL. PHYS., 69, 545 (1965).
22) DERRIEN H.: PRIVATE COMMUNICATION TO CCDN (1966).
23) SCHWARTZ R.B. ET AL.: NUCL. SCI. EEG., 54, 322 (1974).
24) GREEN F.L. ET AL.: WAPD-TM-1073 (1973).
25) FOSTER D.G. AND GLASGOW D.W.:PHYS. REV., C3, 576 (1971).
26) POENITZ W.P. ET AL.: NUCL. SCI. ENG., 78, 333 (1981).
27) POENITZ W.P. AND WHALEN J.F.: ANL/NDM-80 (1983).
28) SMITH A.B.: NUCL. SCI. ENG., 18, 126 (1964).
29) SMITH A.B. AND WHALEN J.F.: PHYS. REV. LETTERS, 16, 526(1966).
30) KNITTER H.H. ET AL.: ZEIT. PHYSIK, 257, 108 (1972).
31) SMITH A.B. ET AL.: 1982 ANTWERP CONF., 39 (1982).
32) HAOUAT G. ET AL.: NUCL. SCI. ENG., 81, 491 (1982).
33) IGARASI S. AND FUKAHORI T.: JAERI 1321 (1991).
34) LEDERER C.M. AND SHIRLEY V.S.: TABLE OF ISOTOPES, 7TH ED.
35) SCHMORAK M.R.: NUCL. DATA SHEETS, 40, 1 (1983).
36) GILBERT A. AND CAMERON A.G.W.: CAN. J. PHYS., 43, 1446 (1965).
37) FREHAUT J. ET AL.: NUCL. SCI. ENG., 74, 29 (1980).
38) VEESER L.R. AND ARTHER E.D.: 1978 HARWELL CONF., P.1054(1978).
39) PEREZ R.B. ET AL.: NUCL. SCI. ENG., 55, 203 (1974).
40) POENITZ W.P.: NUCL. SCI. ENG., 53, 370 (1974).
41) POENITZ W.P.: NUCL. SCI. ENG., 64, 894 (1977).
42) CZIRR J.B. AND SIDHU G.S.: NUCL. SCI. ENG., 57, 18 (1975).
43) CZIRR J.B. AND SIDHU G.S.: NUCL. SCI. ENG., 58, 371 (1975).
44) CZIRR J.B. AND SIDHU G.S.: NUCL. SCI. ENG., 60, 383 (1976).
45) SZABO I. AND MARQUETTE G.P.: ANL-76-90, P.208 (1976).
46) BARTON D.M. ET AL.: NUCL. SCI. ENG., 60, 369 (1976).
47) CANCE M. AND GRENIER G.: NUCL. SCI. ENG., 68, 197 (1978).
48) CANCE M. AND GRENIER G.: CEA-N-2194 (1981).
49) CARLSON A.D. AND PATRICK B.H.: 1978 HARWELL CONF., 880(1978).
50) KARI K.: KFK-2673 (1978).
51) ADAMOV V.M. ET AL.: 1979 KNOXVILLE CONF., 995 (1979).
52) ARLT R. ET AL.: 1979 KNOXVILLE CONF., 990 (1979).
53) ARLT R. ET AL.: 1983 SMOLENICE CONF., 174 (1983).
54) WASSON O.A. ET AL.: NUCL. SCI. ENG., 80, 282 (1982).
55) WASSON O.A. ET AL.: NUCL. SCI. ENG., 81, 196 (1982).
56) LI JINGWEN ET AL.: 1982 ANTWERP CONF., 55 (1982).
57) MAHDAVI M. ET AL.: 1982 ANTWERP CONF., 58 (1982).
58) CARLSON A.D. AND BEHRENS J.W.: 1982 ANTWERP CONF., 456(1982).
59) CORVI F. ET AL.: NEANDC(E) 232U, VOL. 3, 5 (1981).
60) DUSHIN V.N. ET AL.: SOV. ATOM. ENERGY, 55, 656 (1984).
61) CARLSON A.D. ET AL.: 1991 JUELICH CONF., 518 (1992).
62) HOPKINS J.C. AND DIVEN B.C.: NUCL. SCI. ENG., 12, 169 (1962).
63) IIJIMA S. ET AL.: JAERI-M 87-025, P. 337 (1987).
64) MADLAND D.G. AND NIX J.R.: NUCL. SCI. ENG., 81, 213 (1982).
65) OHSAWA T. AND SHIBATA T.: 1991 JUELICH CONF., 965 (1992).
66) BECCHETTI JR.F.D. AND GREENLEES G.W.: PHYS. REV., 182, 1190
(1969).
67) IGNATYUK A.V.: SOV. J. NUCL. PHYS., 29, 450 (1979).
68) SAPHIER D. ET AL.: NUCL. SCI. ENG., 62, 660 (1977).
69) VERBINSKI V.V. ET AL.: PHYS. REV., C7, 1173 (1973).
70) YOUNG P.G. ET AL.: LA-6947 (1977).
71) HIDA K.: JAERI-M 85-035, P. 166, (1985).