92-U -235
92-U -235 Data Eng.+ Eval-Mar00 H.Matsunobu, T.Kawano, T.Ohsawa
DIST-MAR02 REV4-FEB02 20020214
----JENDL-3.3 MATERIAL 9228
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
HISTORY
87-03 Newly evaluated for JENDL-3 by the following evaluators.
K.Hida (NAIG) gamma-ray production data
Y.Nakajima (JAERI) resolved resonances
T.Nakagawa (JAERI) unresolved resonances
H.Matsunobu (SAEI) other quantities
88-08 Data were partly modified to final JENDL-3 data.
Nu-bar, Unresolved resonance parameters.
89-02 FP yields were replaced with JNDC FP Decay File version-2.
Data were compiled in ENDF-5 format by T.Nakagawa (JAERI)
93-08 JENDL-3.2.
H.Matsunobu (SAEI): nu-p, fission cross section
T.Ohsawa (Kinki Univ.): fission spectrum
Y.Kikuchi and T.Nakagawa (JAERI): resonance parameters
Compiled by T.Nakagawa (NDC/JAERI)
00-03 JENDL-3.3.
H.Matsunobu (Data Engineering): nu-p, cross sections
T.Kawano (Kyushu Univ.): Neutron spectra of (n,n'), (n,2n),
(n,3n), direct/semi-direct capture.
T.Ohsawa (Kinki Univ.): fission spectrum
01-04 Compiled by T.Nakagawa (NDC/JAERI)
***** Modified parts from JENDL-3.2 ********************
(1,452), (1,455), (1,456)
(2,151)
(3,1), (3,2), (3,16), (3,17), (3,18), (3,102)
(5,16), (5,17), (5,18), (5,91), (5,455)
***********************************************************
02-01 Covariances were taken from JENDL-3.2 covariance file except
for MF/MT=31/455, 31/456, 33/18, and 33/102.
MF=1 General Information
MT=451 Comments and dictionary
MT=452 Total number of neutrons per fission
Sum of nu-p (MT=456) and nu-d (MT=455).
MT=455 Delayed neutron data
Evaluated by using the Least Square Method on the basis of
the following experimental data in each energy region.
Thermal region: Keepin/1/, Conant/2/, Synetos/3/,
Reeder/4/, Borzakov/5/
50 keV - 7 MeV: Keepin/1/, Maksyutenko/6/, Masters/7/,
Krick/8/, Evans/9/, Cox/10/,
Besant/11/, Gudkov/12/, Loaiza/13/
14 - 15 MeV : Keepin/14/
Decay constants at the thermal energy were adopted from
Keepin et al. /15/
MT=456 Number of prompt neutrons
Evaluated on the basis of the following experimental data:
The thermal value was derived by Averaging the experimental
data by Gwin et al. /16/ with the Maxwellian neutron
spectrum (kT=0.0253 eV).
below 60 eV Gwin et al./16/
50 eV - 500 eV Gwin et al./17/
0.5 keV - 5.15 MeV Gwin et al./18/
5.15 MeV- 15 MeV Frehaut et al./19/
15 MeV - 20 MeV Frehaut et al./20/, Howe /21/
The standard value of 3.756 of Cf-252 nu-p was used in the
present evaluation.
MF=2 Resonance Parameters
MT=151
1) Resolved resonances : below 2.25 keV
Reich-Moore Parameters evaluated by Leal et al. /22/ were
adopted. They are the same as ENDF/B-VI.5.
2) Unresolved resonance parameters : 2.25 - 30 keV
By using ASREP /23/, the evaluated total, capture and
fission cross sections were fitted by adjusting S0, S1 and
fission width. The fission cross section was based on the
experimental data of Weston and Todd /24/. The capture
cross section was calculated as (Sig-f)*Alpha, where alpha
values were determined from the experimental data of Corvi
et al. /25/. The total cross section was evaluated on the
basis of the experimental data by Uttley et al. /26/ and
Boeckhoff et al. /27/
Initial parameters: (* searched parameters)
D-obs = 0.466 eV /22/
* R = 9.88 fm (same as JENDL-3.2)
* S0 = 1.06E-4 /22/
* S1 = 1.80E-4 (same as JENDL-3.2)
Gamma-g = 0.038 eV /22
* Gamma-f(3-) = 0.213 eV, Nu = 2 /22/
* Gamma-f(4-) = 0.146 eV, Nu = 2 /22/
* Gamma-f(+) = taken from Ref /28/ (same as JENDL-3.2)
2200-m/s cross sections and calculated res. integrals.
2200 m/s res. integ.
elastic 15.08 b -
fission 585.1 b 276 b
capture 98.69 b 141 b
total 698.9 b -
MF=3 Neutron Cross Sections
Above 30 keV: Data were evaluated as follows.
MT=1 Total
Evaluated on the basis of the experimental data by Uttley et
al. /26/, Boeckoff et al. /27/, Schwartz et al. /29/,
Green et al. /30/, Foster and Glasgow /31/, Poenitz et al.
/32/, and Poenitz and Whalen /33/.
MT=2 Elastic scattering
Evaluated on the basis of the experimental data by Smith
/34/, Smith and Whalen /35/ and Knitter et al. /36/ in
the energy range from 0.3 to 2.3 MeV. In the remaining
energy range it was derived by subtracting sum of partial
cross sections from total cross section.
MT=4,51-79,91 Inelastic scattering cross sections
Evaluated on the basis of experimental data and calculation
with optical and statistical models, and coupled channel
theory taking into account of deformation of nucleus. The
calculated inelastic scattering cross sections were
decreased by factor of 0.9 below about 2 MeV so as to be in
agreement with Smith et al. /37/.
Deformed optical potential parameters were adopted from the
recommendation by Haouat et al. /38/.
V = 46.4 - 0.3*En, Ws = 3.3 + 0.4*En, Vso= 6.2 (MeV)
r0 = 1,26, rs = 1.26, rso= 1.12 (fm)
a0 = 0.63, b = 0.52, aso= 0.47 (fm)
beta-2 = 0.22, beta-4 = 0.08
The spherical optical potential parameters were obtained by
fitting the experimental data of the total cross section.
V = 40.90 - 0.04*En, Ws = 6.5 + 0.25*En,Vso= 7.0 (MeV)
r0 = 1.312, rs = 1.375, rso= 1.320 (fm)
a = 0.490, b = 0.454, ao = 0.470 (fm)
Statistical model calculation with CASTHY code /39/.
Competing processes : fission (n,2n), (n,3n), (n,4n).
Level fluctuation was considered.
The level scheme taken from Refs./40,41/.
No. Energy(keV) Spin-Parity
g.s. 0.0 7/2 -
1 0.075 1/2 +
2 13.038 3/2 +
3 46.347 9/2 -
4 51.697 5/2 +
5 81.732 7/2 +
6 103.2 11/2 -
7 129.292 5/2 +
8 150.4 9/2 +
9 170.7 13/2 -
10 171.378 7/2 +
11 197.1 11/2 +
12 225.40 9/2 +
13 249.1 15/2 -
14 291.1 11/2 +
15 294.7 13/2 +
16 332.818 5/2 +
17 338.8 17/2 -
18 357.2 15/2 +
19 367.05 7/2 +
20 368.8 13/2 +
21 393.184 3/2 +
22 414.8 9/2 +
23 426.71 5/2 +
24 445.7 7/2 +
25 474.27 7/2 +
26 510.0 9/2 +
27 533.2 9/2 +
28 607.7 11/2 +
29 633.04 5/2 -
Continuum levels assumed above 650 keV.
The level density parameters : Gilbert and Cameron /42/.
MT=16,17,37 (n,2n), (n,3n), (n,4n)
Evaluated on the basis of the following experimental data
and calculation with evaporation model.
(n,2n) : Frehaut et al. /43/
(n,3n) and (n,4n) : Veeser and Arthur /44/
MT=18 Fission
Derived with simultaneous evaluation/45/ on the basis of
experimental data on the fission cross sections of U-233,
U-235, -238, Pu-239, -240 and -241 in the energy range from
30 keV to 20 MeV.
The experimental data of U-235 considered in this evaluation
are as follows:
Perez et al. /46/, Poenitz /47,48/, Czirr and Sidhu
/49,50,51/, Szabo and Marquette /52/, Barton et al.
/53/, Gwin et al. /54/, Cance and Grenier /55,56/,
Carlson and Patrick /57/, Kari /58/, Adamov et al.
/59/, Arlt et al. /60,61,62/, Wasson et al.
/63,64/, Li et al. /65,66/, Mahdavi et al. /67/,
Carlson and Behrens /68/, Corvi et al. /25/, Alkhazov
et al. /69,70,71/, Azimi-Garakani and
Bagheri-Darbandi /72/, Dushin et al. /73/, Weston and
Todd /24/, Carlson et al. /74/, Herbach et al. /75/,
Schroder et al. /76/, Iwasaki et al. /77/, Buleeva et
al. /78/, Filatenkov et al. /79/, Kalinin et al.
/80,81/, Johnson R.G. /82/, Merla et al. /83/,
and Lisowski et al. /84/
MT=102 Capture
Below 1 MeV, derived from the evaluated alpha value and
fission cross section below 1 MeV. Alpha value was
evaluated on the basis of the experimental data by Hopkins
and Diven /85/ and by Beer and Kaeppeler /86/. As for the
fission cross section, the result by simultaneous evaluation
was adopted.
Above 1 MeV, calculated with CASTHY code /39/. Direct and
semi-direct capture cross sections were calculated with
DSD code /87/ and added to the CASTHY calculation.
MF=4 Angular Distributions of Secondary Neutrons
MT=2, 51-79, 91 Calculated with CASTHY and ECIS codes.
MT=16,17,18,37 Isotropic in the lab system.
MF=5 Energy Distributions of Secondary Neutrons
MT=16,17,91
Calculated with EGNASH /88,89/ on the basis of
preequilibrium and multi-step evaporation model.
MT=37
Calculated with PEGASUS code /90/.
MT=18
DISTRIBUTIONS WERE CALCULATED WITH A MODIFIED MADLAND-NIX
MODEL WITH CONSIDERATION FOR MULTIMODAL NATURE OF THE FISSION
PROCESS/91,92/. THE COMPOUND NUCLEUS FORMATION CROSS SEC-
TIONS FOR FISSION FRAGMENTS WERE CALCULATED USING BECCHETTI-
GREENLEES POTENTIAL/93/. THE IGNATYUK FORMULA/94/ WERE
USED TO GENERATE THE LEVEL DENSITY PARAMETERS. UP TO
3rd-CHANCE-FISSION WERE CONSIDERED AT HIGH INCIDENT NEUTRON
ENERGIES.
A preequilibrium emission was taken into account above 10
MeV as described in Ref./95/. The prefission neutron
spectrum was calculated with the Feshbach-Kerman-Koonin
theory /96/.
PARAMETERS ADOPTED FOR THERMAL-NEUTRON FISSION:
(S1: STANDARD-1, S2: STANDARD-2, SL: SUPERLONG MODES)
TOTAL AVERAGE FRAGMENT KINETIC ENERGY
= 187 MEV FOR S1
= 167 MEV FOR S2
= 157 MEV FOR SL
AVERAGE ENERGY RELEASE
= 194.49 MEV FOR S1
= 184.86 MEV FOR S2
= 190.95 MEV FOR SL
AVERAGE MASS NUMBER OF LIGHT FF = 96
AVERAGE MASS NUMBER OF HEAVY FF = 140
LEVEL DENSITY OF THE LIGHT FF = 10.31(S2), 11.43(S1)
LEVEL DENSITY OF THE HEAVY FF = 8.89(S1), 13.25(S2)
MODE BRANCHING RATIO = 0.18342(S1), 0.81589(S2),
0.00069(SL)
NOTE THAT THE PARAMETERS VARY WITH THE INCIDENT ENERGY
WITHIN THE INDICATED RANGE.
MT=455
Taken from Brady and England /97/. Group abundace parameters
were adjusted so as to reproduce total delayed neutron
emission rate measured by Keepin /15/, Piksaikin /98/ and
East /99/.
MF=12 Photon Production Multiplicities (option 1)
Given for the following sections below 369.579 keV
MT=18 Fission
The thermal neutron-induced fission gamma spectrum
measured by Verbinski /100/ was adopted.
MT=51-69 Inelastic Scattering
The photon branching data taken from /41/ were converted
to the photon multiplicities.
MT=102 Capture
Calculated with GNASH /89/, where the pygmy resonance
was introduced /101/.
MF=13 Photon Production Cross Sections
MT=3 Non-elastic
Calculated with GNASH /89/ above 369.579 keV.
Verbinski's data /100/ were used up to 20 MeV.
MF=14 Photon Angular Distributions
MT=3,18,51-69,102
Isotropic distributions were assumed.
MF=15 Continuous Photon Energy Spectra
MT=3,102
Calculated with GNASH /89/
MT=18
Experimental data by Verbinski /100/ were adopted.
MF=31 Covariances of Average Number of Neutrons per Fission
MT=452
Constructed from MT=455 and 456.
MT=455
Based on experimental data./102/ A chi-value was 0.16.
MT=456
Based on experimental data./102/ A chi-value was 0.88.
MF=33 Covariances of Cross Sections (ref.103)
MT=1
Based on experimental data. A chi-value was 2.39.
MT=2
Constructed from MT=1, 4, 16, 17, 18, 37 and 102.
MT=4, 51-79, 91
The covariances were obtained by using kalman.
A chi-value was 1.4
MT=16
Based on experimental data. A chi-value was 0.281
MT=17
Based on experimental data. A chi-value was 0.146.
MT=18
Based on the simultaneous evaluation /45/.
MT=37
Based on experimental data. A chi-value was 1.0.
MT=102
Based on experimental data on alpha values.
A chi-value was 0.82.
Note that no covariance is given in the resonance region below
30 keV.
MF=34 Covariances of Angular Distributions (ref.103)
MT=2
The covariances of p1 coefficients were obtained by using
kalman. A chi-value was 0.22.
MF=35 Covariances of Energy Distributions
MT=18
The covariances were obtained by using kalman./104/
References
1) Keepin G.R. et al.: J. Nucl. Ener, 6, 1 (1957).
2) Conant J.F. and Palmedo P.F.: Nucl. Sci. Eng., 44, 173 (1971).
3) Synetos S. and Williams J.G.: INDC(NDS)-107, 183 (1979).
4) Reeder P.L. and Williams J.G: Phys. Rev., 28C, 1740 (1983).
5) Borzakov S.B. et al.: AE, 79, 231 (1995).
6) Maksyutenko B.P.: Sov. Phys. JETP, 8, 565 (1959).
7) Masters C.F. et al.: Nucl. Sci. Eng., 36, 202 (1969).
8) Krick M.S. and Evans A.E.: Nucl. Sci. Eng., 47, 311 (1972).
9) Evans A.E. and Thorpe M.M.: Nucl. Sci. Eng., 50, 80 (1973).
10) Cox S.A.: ANL/NDM-5 (1974)
11) Besant C.B. et al.: British Nucl. Ener. Soc., 16, 161 (1977).
12) Gudkov A.N. et al.: AE, 66, 100 (1989).
13) Loaiza D. et al.: ANS, 76, 361 (1997).
14) Keepin G.R.: LA-4320, (1969).
15) Keepin G.R., et al.: Phys. Rev., 107, 1044 (1957).
16) Gwin R. et al.: Nucl. Sci. Eng., 87, 381 (1984). and
EXFOR 12906.003
17) Gwin R. et al: ORNL-TM-6246 (1978).
18) Gwin R. et al: Nucl. Sci. Eng., 94, 365 (1986).
19) Frehaut J. et al.: 1982 Antwerp Conf., 78 (1982).
20) Frehaut J. et al.: EXFOR 20506.002 (1980), 21685.002 (1980).
21) Howe R.E.: Nucl. Sci. Eng., 86, 157 (1984).
22) Leal L.C. et al.: Nucl. Sci. Eng., 131, 230 (1999).
23) Kikuchi Y., et al.: JAERI-Data/Code 99-025 (1999).
24) Weston L.W. and Todd J.H.: Nucl. Sci. Eng., 88, 567(1984).
25) Corvi F. et al.: NEANDC(E) 232U, vol. 3, 5 (1981).
26) Uttley C.A. et al.: 1966 Paris Conf., Vol.1, p.165 (1966).
27) Boeckhoff K.H. et al.: J. Nucl. Energy, 26, 91 (1972).
28) Kikuchi Y. and An S.: J. Nucl. Sci. Technol., 7, 157 (1970).
29) Schwartz R.B. et al.: Nucl. Sci. Eng., 54, 322 (1974).
30) Green F.L. et al.: WAPD-TM-1073 (1973).
31) Foster D.G. and Glasgow D.W.:Phys. Rev., C3, 576 (1971).
32) Poenitz W.P. et al.: Nucl. Sci. Eng., 78, 333 (1981).
33) Poenitz W.P. and Whalen J.F.: ANL/NDM-80 (1983).
34) Smith A.B.: Nucl. Sci. Eng., 18, 126 (1964).
35) Smith A.B. and Whalen J.F.: Phys. Rev. Letters, 16, 526
(1966).
36) Knitter H.H. et al.: Zeit. Physik, 257, 108 (1972).
37) Smith A.B. et al.: 1982 Antwerp Conf., 39 (1982).
38) Haouat G. et al.: Nucl. Sci. Eng., 81, 491 (1982).
39) Igarasi S. and Fukahori T.: JAERI 1321 (1991).
40) Lederer C.M. and Shirley V.S.: Table of Isotopes, 7th Ed.
41) Schmorak M.R.: Nucl. Data Sheets, 40, 1 (1983).
42) Gilbert A. and Cameron A.G.W.: Can. J. Phys., 43, 1446 (1965).
43) Frehaut J. et al.: Nucl. Sci. Eng., 74, 29 (1980).
44) Veeser L.R. and Arther E.D.: 1978 Harwell Conf., p.1054(1978).
45) Kawano T., et al.: JAERI-Research 2000-004 (2000).
46) Perez R.B. et al.: Nucl. Sci. Eng., 55, 203 (1974).
47) Poenitz W.P.: Nucl. Sci. Eng., 53, 370 (1974).
48) Poenitz W.P.: Nucl. Sci. Eng., 64, 894 (1977).
49) Czirr J.B. and Sidhu G.S.: Nucl. Sci. Eng., 57, 18 (1975).
50) Czirr J.B. and Sidhu G.S.: Nucl. Sci. Eng., 58, 371 (1975).
51) Czirr J.B. and Sidhu G.S.: Nucl. Sci. Eng., 60, 383 (1976).
52) Szabo I. and Marquette G.P.: ANL-76-90, p.208 (1976).
53) Barton D.M. et al.: Nucl. Sci. Eng., 60, 369 (1976).
54) Gwin R. et al.: Nucl. Sci. Eng., 59, 79 (1976),
EXFOR 10267.006
55) Cance M. and Grenier G.: Nucl. Sci. Eng., 68, 197 (1978).
56) Cance M. and Grenier G.: CEA-N-2194 (1981).
57) Carlson A.D. and Patrick B.H.: 1978 Harwell Conf., 880(1978).
58) Kari K.: KfK-2673 (1978).
59) Adamov V.M. et al.: 1979 Knoxville Conf., 995 (1979).
60) Arlt R. et al.: 1979 Knoxville Conf., 990 (1979).
61) Arlt R. et al.: 1983 Smolenice Conf., 174 (1983).
62) Arlt R. et al.: Isotopenpraxis, 21, 344 (1985),
EXFOR 30475.002, 30558.002, and 30559.002 (?)
63) Wasson O.A. et al.: Nucl. Sci. Eng., 80, 282 (1982).
64) Wasson O.A. et al.: Nucl. Sci. Eng., 81, 196 (1982).
65) Li Jingwen et al.: 1982 Antwerp Conf., 55 (1982).
66) Li Jingwen et al.: INDC(CPR)-009/L, P.3 (1986),
EXFOR 30721.002
67) Mahdavi M. et al.: 1982 Antwerp Conf., 58 (1982).
68) Carlson A.D. and Behrens J.W.: 1982 Antwerp Conf., 456(1982).
69) Alkhazov I.D. et al.: 1983 Moskva Conf., 2, 201 (1983),
EXFOR 40911.002
70) Alkhazov I.D. et al.: Jadernye Konstanty, 4, 19 (1986),
EXFOR 40927.003 (?)
71) Alkhazov I.D. et al.: 1988 Mito Conf., P.145 (1988),
EXFOR 41013.003
72) Azimi-Garakani D. and Bagheri-Darbandi M.: INDC(IRN)-003
(1983), EXFOR 30753.002 (*)
73) Dushin V.N. et al.: Sov. Atom. Energy, 55, 656 (1984).
74) Carlson A.D. et al.: Private Communication (1984),
EXFOR 10987.002, Paper Presented at Advisary Group Meeting on
Nuclear Standard Reference Data, Geel
75) Herbach C.M. et al.: INDC(GDR)-37 (1985), EXFOR : 30706.002
and 30706.003 (?)
76) Schroder I.D. et al.: Trans. Amer. Nucl. Soc., 50, 154 (1985),
EXFOR 12953.002 (*)
77) Iwasaki T. et al.: 88 Mito Conf., P. 91 (1988),
EXFOR 22091.002
78) Buleeva N.N. et al.: Atomnaja Energija, 65, 348 (1988),
EXFOR 40969.011
79) Filatenkov A.A. et al.: Jadernye Konstanty, 2, 56 (1988),
EXFOR 40966.008 (*)
80) Kalinin V.A. et al.: Atomnaja Energij, 64, 194 (1988),
EXFOR 40963.002
81) Kalinin V.A. et al.: Atomnaja Energij, 71, 181 (1991),
EXFOR 41112.002
82) Johnson R.G. et al.: Private Communication (1991),
EXFOR 12924.002
83) Merla K. et al.: 1991 Juelich Conf., P.510 (1991),
EXFOR 22304.002 and 22304.006
84) Lisowski P.W. et al.: Private Communication (1997) to
T.Fukahori(JAERI)
85) Hopkins J.C. and Diven B.C.: Nucl. Sci. Eng., 12, 169 (1962).
86) Beer H. and Kaeppeler F.: Phys. Rev. C20, 201 (1979)
87) Kawano T.: private communication (1999).
88) Yamamuro N.: JAERI-M 90-006 (1990).
89) Young P.G. et al.: LA-6947 (1977).
90) Iijima S. et al.: JAERI-M 87-025, p. 337 (1987).
Nakagawa T., et al.: JAERI-Data/Code 99-031 (1999).
91) Madland D.G. and Nix J.R.: Nucl. Sci. Eng., 81, 213 (1982).
92) OHSAWA, T. ET AL.: TO BE PUBLISHED. SEE ALSO: OHSAWA, T. ET
AL.: NUCL. PHYS. A653, 17 (1999)
93) Becchetti Jr.F.D. and Greenlees G.W.: Phys. Rev., 182, 1190
(1969).
94) Ignatyuk A.V.: Sov. J. Nucl. Phys., 29, 450 (1979).
95) Kawano T. et al.: Phys. Rev., C63, 034601 (2001).
96) Feshbach H., et al.: Ann. Phys. (N.Y.) 125, 429 (1980).
97) Brady M.C. and England T.R.: Nucl. Sci. Eng., 103, 129 (1989).
98) Piksaikin V.M.: private communication (1997).
99) East L.V., et al.: LA-4605-MS (1970).
100) Verbinski V.V. et al.: Phys. Rev., C7, 1173 (1973).
101) Hida K.: JAERI-M 85-035, p. 166, (1985).
102) Matsunobu H.: Private communication (2001).
103) Shibata K. et al.: JAERI-Research 97-074 (1997).
104) Kawano T. et al.: JAERI-Research 99-009 (1999).[in Japanese]