23-V - 50
23-V - 50 JAEA EVAL-Mar10 N.Iwamoto
DIST-MAY10 20100312
----JENDL-4.0 MATERIAL 2325
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
10-03 The resolved resonance parameters were evaluated by
N.Iwamoto.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (MLBW formula) : below 42.5 keV
Resolved resonance parameters were taken from Mughabghab
/1/. If the total spin J of resonance level was not
known, it was determined from the spin distribution of the
level density randomly. The negative resonance was placed
so as to reproduce the cross sections at thermal energy
recommended by Mughabghab /1/.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 5.2385e+01
Elastic 7.6986e+00
n,gamma 4.4685e+01 5.9287e+01
n,p 7.1023e-04
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /2/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /2/.
MT= 22 (n,na) cross section
Calculated with CCONE code /2/.
MT= 28 (n,np) cross section
Calculated with CCONE code /2/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /2/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /2/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /2/.
MT=102 Capture cross section
Calculated with CCONE code /2/.
MT=103 (n,p) cross section
Calculated with CCONE code /2/.
The cross section at thermal energy was evaluated so as to
reproduce the data measured by Wagemans et al./3/.
MT=104 (n,d) cross section
Calculated with CCONE code /2/.
MT=105 (n,t) cross section
Calculated with CCONE code /2/.
MT=106 (n,He3) cross section
Calculated with CCONE code /2/.
MT=107 (n,a) cross section
Calculated with CCONE code /2/.
MT=111 (n,2p) cross section
Calculated with CCONE code /2/.
MT=112 (n,pa) cross section
Calculated with CCONE code /2/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /2/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /2/.
MT= 22 (n,na) reaction
Calculated with CCONE code /2/.
MT= 28 (n,np) reaction
Calculated with CCONE code /2/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /2/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /2/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /2/.
MT=102 Capture reaction
Calculated with CCONE code /2/.
*****************************************************************
Nuclear Model Calculation with CCONE code /2/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* optical model potential
neutron omp: Kunieda,S. et al./4/
proton omp: Koning,A.J. and Delaroche,J.P./5/
deuteron omp: Lohr,J.M. and Haeberli,W./6/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./7/
alpha omp: McFadden,L. and Satchler,G.R./8/
2) Two-component exciton model/9/
* Global parametrization of Koning-Duijvestijn/10/
was used.
* Gamma emission channel/11/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/12/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/13/.
Parameters are shown in Table 2.
* Gamma-ray strength function of standard Lorentzian form
was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of V-50
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 6 +
1 0.22620 5 +
2 0.32016 4 +
3 0.35540 3 +
4 0.38840 2 +
5 0.83630 5 +
6 0.91000 7 +
7 0.91010 4 +
8 1.30140 2 +
9 1.33150 1 +
10 1.40190 3 +
11 1.49530 1 +
12 1.51840 2 +
13 1.56170 2 +
14 1.67720 3 +
15 1.70020 4 +
16 1.70310 5 -
17 1.71890 3 +
18 1.72460 8 +
19 1.72520 4 -
20 1.75150 3 +
21 1.76150 6 +
22 1.76230 3 +
23 1.81080 2 +
24 1.88240 5 +
25 1.93600 1 +
26 1.95400 1 +
27 2.03800 3 -
28 2.03801 3 +
29 2.11100 3 +
30 2.13300 3 +
31 2.16200 4 -
32 2.30800 2 +
33 2.31260 7 +
34 2.34400 3 +
35 2.39900 5 -
36 2.42400 3 -
37 2.42500 1 +
38 2.45500 4 +
39 2.47830 9 +
40 2.48300 5 +
-------------------
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
V- 51 6.9100 1.6803 -0.6457 1.5183 -2.1580 12.5084
V- 50 7.0000 0.0000 -0.6353 1.4319 -3.1193 9.4496
V- 49 6.7530 1.7143 0.1225 1.5781 -3.1344 13.3216
Ti- 50 7.2500 3.3941 -0.4613 1.2919 1.1007 10.9863
Ti- 49 7.8800 1.7143 0.2445 1.1040 -0.1128 7.6316
Ti- 48 7.0700 3.4641 0.6643 1.4400 -0.8454 13.4405
Sc- 49 6.7530 1.7143 -0.4669 1.1948 0.6746 6.9625
Sc- 48 7.3300 0.0000 0.2130 1.1004 -1.3101 5.1281
Sc- 47 6.5239 1.7504 1.5602 1.4579 -2.4909 11.0454
Sc- 46 6.7339 0.0000 1.4596 1.2544 -2.5877 6.7871
--------------------------------------------------------
Table 3. Gamma-ray strength function for V- 51
--------------------------------------------------------
* E1: ER = 19.11 (MeV) EG = 7.28 (MeV) SIG = 79.52 (mb)
* M1: ER = 11.06 (MeV) EG = 4.00 (MeV) SIG = 8.51 (mb)
* E2: ER = 16.99 (MeV) EG = 5.50 (MeV) SIG = 1.12 (mb)
--------------------------------------------------------
References
1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
2) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
3) Wagemans,C., Druyts,S., Geltenbort,P.: Phys. Rev. C50, 487
(1994).
4) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
5) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
6) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
7) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
8) McFadden,L. and Satchler,G.R.: Nucl. Phys. 84, 177 (1966).
9) Kalbach,C.: Phys. Rev. C33, 818 (1986).
10) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
11) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
12) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
13) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).