23-V - 51
23-V - 51 JAEA EVAL-Mar10 N.Iwamoto
DIST-MAY10 20100312
----JENDL-4.0 MATERIAL 2328
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
10-03 The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region (Reich-Moore formula) : below 100.0
keV. Parameters were evaluated based on experimental data
/1,2,3,4,5/ and modified to reproduce experimental
total cross sections. The negative resonance was placed so
as to reproduce the cross sections at thermal energy
recommended by Mughabghab /4/.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 9.8868e+00
Elastic 4.9677e+00
n,gamma 4.9191e+00 2.5607e+00
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
In the energy range from 0.1 to 5 MeV, cross section was
adopted from JENDL-3.3. Above 5 MeV, cross section was
calculated with CCONE code/6/.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
MT=111 (n,2p) cross section
Calculated with CCONE code /6/.
MT=112 (n,pa) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
The Legendre coefficients were taken from JEFF-3.1, taking
into account the result of a benchmark test.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* optical model potential
neutron omp: Kunieda,S. et al./7/
proton omp: Koning,A.J. and Delaroche,J.P./8/ (+)
deuteron omp: Lohr,J.M. and Haeberli,W./9/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/ (+)
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./10/
alpha omp: Huizenga,J.R. and Igo,G./11/ (+)
(+) omp parameters were modified.
* DWBA calculation
levels: 2,3,4 (see Table 1)
2) Two-component exciton model/12/
* Global parametrization of Koning-Duijvestijn/13/
was used.
* Gamma emission channel/14/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/15/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/16/.
Parameters are shown in Table 2.
* Gamma-ray strength function of standard Lorentzian form
was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of V-51
---------------------------------
No. Ex(MeV) J PI, DWBA: beta
---------------------------------
0 0.00000 7/2 -
1 0.32008 5/2 -
2 0.92866 3/2 - 0.06
3 1.60923 11/2 - 0.07
4 1.81324 9/2 - 0.07
5 2.41078 3/2 -
6 2.54740 1/2 +
7 2.67743 3/2 +
8 2.69962 15/2 -
9 2.79000 5/2 -
10 3.08362 5/2 -
11 3.15000 3/2 -
12 3.21480 3/2 -
13 3.26403 5/2 -
14 3.27999 5/2 -
15 3.31000 5/2 +
16 3.32000 5/2 -
17 3.37200 3/2 -
18 3.37772 9/2 -
19 3.38110 3/2 -
20 3.38320 9/2 +
21 3.38558 13/2 -
22 3.39502 13/2 -
23 3.41220 7/2 +
24 3.44392 5/2 +
25 3.45409 9/2 -
26 3.51702 9/2 -
27 3.55480 9/2 -
28 3.56260 5/2 -
29 3.56820 7/2 -
30 3.57663 3/2 -
31 3.61405 9/2 -
32 3.62370 5/2 +
33 3.63200 3/2 +
34 3.63203 5/2 -
35 3.66310 3/2 -
36 3.66800 3/2 -
37 3.67780 3/2 -
38 3.68300 5/2 -
39 3.72270 5/2 -
40 3.74300 1/2 +
---------------------------------
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
V- 52 7.5500 0.0000 -0.6140 1.1810 -1.6043 6.2628
V- 51 6.9100 1.6803 -0.6457 1.5183 -2.1580 12.5084
V- 50 7.0000 0.0000 -0.6353 1.4319 -3.1193 9.4496
Ti- 51 6.8200 1.6803 -0.3127 1.1927 0.5191 7.0839
Ti- 50 7.2500 3.3941 -0.4613 1.2919 1.1007 10.9863
Ti- 49 7.8800 1.7143 0.2445 1.1040 -0.1128 7.6316
Sc- 50 7.2083 0.0000 -0.8027 1.2352 -1.5662 6.4725
Sc- 49 6.7530 1.7143 -0.4669 1.1948 0.6746 6.9625
Sc- 48 7.3300 0.0000 0.2130 1.1004 -1.3101 5.1281
Sc- 47 6.5239 1.7504 1.5602 1.4579 -2.4909 11.0454
--------------------------------------------------------
Table 3. Gamma-ray strength function for V- 52
--------------------------------------------------------
* E1: ER = 19.02 (MeV) EG = 7.21 (MeV) SIG = 81.49 (mb)
* M1: ER = 10.98 (MeV) EG = 4.00 (MeV) SIG = 8.28 (mb)
* E2: ER = 16.88 (MeV) EG = 5.49 (MeV) SIG = 1.10 (mb)
--------------------------------------------------------
References
1) Brusegan,A. et al.: Neutron Total Cross Section of
Vanadium, 97Trieste 410,(1997).
2) Winters,R.R. et al.: Phys. Rev. C18, 2092 (1978).
3) Garg,J.B. et al.: Nucl. Sci. Eng. 65, 76 (1978).
4) Mughabghab,S.F. et al.: "Neutron Cross Sections Vol.1 Part A"
Academic Press (1981).
5) Macklin,R.L. et al.: Nucl. Sci. Eng. 78, 110 (1981).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
8) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
9) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
10) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
11) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
12) Kalbach,C.: Phys. Rev. C33, 818 (1986).
13) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
14) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
15) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
16) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).