74-W -180
74-W -180 JAEA EVAL-Feb10 N.Iwamoto
DIST-MAY10 20100301
----JENDL-4.0 MATERIAL 7425
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
10-02 The resolved resonance parameters were evaluated by
N.Iwamoto.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region: below 110 eV
Resolved resonance parameters were taken from Mughabghab
/1/. The negative resonance was placed so as to
reproduce the cross sections at thermal energy recommended
by Mughabghab /1/.
Unresolved resonance region : 110 eV - 300 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /2/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
CCOM /3/ and CCONE /4/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.8566e+01
Elastic 1.0944e+01
n,gamma 3.7622e+01 2.4823e+02
n,alpha 1.1781e-04
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /4/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /4/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /4/.
MT= 22 (n,na) cross section
Calculated with CCONE code /4/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /4/.
MT= 28 (n,np) cross section
Calculated with CCONE code /4/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /4/.
MT= 33 (n,nt) cross section
Calculated with CCONE code /4/.
MT= 41 (n,2np) cross section
Calculated with CCONE code /4/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /4/.
MT=102 Capture cross section
Calculated with CCONE code /4/.
MT=103 (n,p) cross section
Calculated with CCONE code /4/.
MT=104 (n,d) cross section
Calculated with CCONE code /4/.
MT=105 (n,t) cross section
Calculated with CCONE code /4/.
MT=106 (n,He3) cross section
Calculated with CCONE code /4/.
MT=107 (n,a) cross section
Calculated with CCONE code /4/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /4/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /4/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /4/.
MT= 22 (n,na) reaction
Calculated with CCONE code /4/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /4/.
MT= 28 (n,np) reaction
Calculated with CCONE code /4/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /4/.
MT= 33 (n,nt) reaction
Calculated with CCONE code /4/.
MT= 41 (n,2np) reaction
Calculated with CCONE code /4/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /4/.
MT=102 Capture reaction
Calculated with CCONE code /4/.
*****************************************************************
Nuclear Model Calculation with CCONE code /4/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,2,3,7,25 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./5/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./6/
deuteron omp: Lohr,J.M. and Haeberli,W./7/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./8/
alpha omp: Huizenga,J.R. and Igo,G./9/
(+) omp parameters were modified.
2) Two-component exciton model/10/
* Global parametrization of Koning-Duijvestijn/11/
was used.
* Gamma emission channel/12/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/13/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/14/.
Parameters are shown in Table 2.
* Gamma-ray strength function of enhanced generalized
Lorentzian form/15/,/16/ was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of W-180
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.10353 2 + *
2 0.33752 4 + *
3 0.68841 6 + *
4 1.00633 2 -
5 1.08234 3 -
6 1.11728 2 +
7 1.13843 8 + *
8 1.18485 4 -
9 1.23266 3 +
10 1.30754 5 -
11 1.32207 2 +
12 1.36048 4 +
13 1.38200 6 +
14 1.46179 6 -
15 1.47000 5 +
16 1.51600 0 +
17 1.52901 8 -
18 1.53558 5 +
19 1.56813 5 +
20 1.58724 1 -
21 1.62418 7 -
22 1.63287 2 -
23 1.63464 4 +
24 1.63977 5 +
25 1.66414 10 + *
26 1.69356 4 -
27 1.69500 0 +
28 1.70294 6 +
29 1.72554 9 -
30 1.72981 6 +
31 1.76440 6 +
32 1.78481 0 +
33 1.81481 0 +
34 1.83081 8 -
35 1.83169 2 -
36 1.85112 0 +
37 1.85516 0 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
W-181 21.7000 0.8920 1.4211 0.5039 -0.8970 5.1048
W-180 21.8000 1.7889 1.6876 0.4911 0.0704 5.8453
W-179 21.6088 0.8969 1.8693 0.4999 -0.9425 5.1166
W-178 20.9690 1.7989 2.0630 0.5013 0.0312 5.9219
Ta-180 21.0159 0.0000 1.3879 0.4435 -0.9659 2.9501
Ta-179 20.2186 0.8969 1.8801 0.5276 -0.9807 5.2657
Ta-178 20.8166 0.0000 1.8424 0.4309 -0.9032 2.8000
Ta-177 20.0232 0.9020 2.2009 0.5405 -1.1881 5.5395
Hf-179 21.3300 0.8969 1.6163 0.4997 -0.8128 4.9790
Hf-178 21.4500 1.7989 1.8369 0.5406 -0.5584 6.7847
Hf-177 21.4900 0.9020 1.7625 0.4917 -0.7826 4.9093
Hf-176 20.7666 1.8091 1.9236 0.5596 -0.6722 6.9987
Hf-175 21.1200 0.9071 2.0296 0.4955 -0.8169 4.9536
Hf-174 20.5638 1.8194 2.1611 0.5101 -0.0006 6.0233
--------------------------------------------------------
Table 3. Gamma-ray strength function for W-181
--------------------------------------------------------
K0 = 1.140 E0 = 4.500 (MeV)
* E1: ER = 12.59 (MeV) EG = 2.29 (MeV) SIG = 211.00 (mb)
ER = 14.88 (MeV) EG = 5.18 (MeV) SIG = 334.00 (mb)
ER = 5.30 (MeV) EG = 1.80 (MeV) SIG = 2.30 (mb)
* M1: ER = 7.25 (MeV) EG = 4.00 (MeV) SIG = 1.05 (mb)
* E2: ER = 11.14 (MeV) EG = 3.94 (MeV) SIG = 4.57 (mb)
--------------------------------------------------------
References
1) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
2) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
3) Iwamoto,O.: JAERI-Data/Code 2003-020 (2003).
4) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
5) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
6) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
7) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
8) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
9) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
10) Kalbach,C.: Phys. Rev. C33, 818 (1986).
11) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
12) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
13) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
14) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).
15) Kopecky,J., Uhl,M.: Phys. Rev. C41, 1941 (1990).
16) Kopecky,J., Uhl,M., Chrien,R.E.: Phys. Rev. C47, 312 (1990).