54-Xe-136
54-Xe-136 JAEA EVAL-FEB22 S.Kunieda, A.Ichihara, K.Shibata+
DIST-MAY10 20100316
----JENDL-4.0 MATERIAL 5461
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-11 Re-evaluation was performed for JENDL-4.0
10-03 Compiled by S.Kunieda
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
- Resolved resonance region (MLBW formula): below 490 keV
Resonance parameters in JENDL-3.3 consisted of the data
measured by Macklin/1/ and by Fogelberg et al./2/.
The data of the 1st and 2nd resonance levels are a neutron
capture area and a radiation width measured by Macklin. The
data of the other levels except the 1st level are g*(neutron
width) and the total spin j measured by Fogelberg et al.,
and contain 4 s-wave levels and 31 p-wave levels. The
neutron width of the 1st level at 2154 eV was derived from
the neutron capture area using the radiation width of the
2nd level measured by Macklin. The neutron widths of the
remaining 35 levels from 18.393 to 480.750 kev were derived
using the j-values given by Fogelberg et al. The average
radiation width of 122.5 meV was adopted for all the
resonance levels except the 1st and 2nd levels. The
scattering radius was taken from the graph (fig. 1, Part A)
by Mughabghab et al./3/ A negative resonance level was
added at -822.03 eV, and the above average radiation width
was determined so as to reproduce the thermal capture cross
section of 260+-20 mb given by mughabghab et al.
In JENDL-4, the energy and neutron width of the negative
level were modified so as to reproduce the thermal capture
cross section of 130+-15 mb at 0.0253 eV measured by
Kondaiah et al./4/
- No unresolved resonance parameters are given.
Thermal cross sections & resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barns) (barns)
----------------------------------------------------------
Total 5.42750E+00
Elastic 5.29746E+00
n,gamma 1.30039E-01 8.54723E-02
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
The OPTMAN /5/ & POD /6/ calculations.
MT= 3 Non-elastic cross section
Sum of partial non-elastic cross sections.
MT= 4,51-91 (n,n') cross section
The OPTMAN /5/ & POD /6/ calculations.
MT= 16 (n,2n) cross section
MT= 17 (n,3n) cross section
MT= 22 (n,na) cross section
MT= 28 (n,np) cross section
MT= 32 (n,nd) cross section
MT=102 Capture cross section
Calculated by the POD code /6/. The value of gamma-ray
strength function was determined to follow JENDL-3.3's cross
sections around 500 keV.
MT=103 (n,p) cross section
MT=104 (n,d) cross section
MT=105 (n,t) cross section
MT=106 (n,He3) cross section
MT=107 (n,a) cross section
Calculated by the POD code /6/.
MT=203 (n,xp) cross section
Sum of (n,np) and (n,p)
MT=204 (n,xd) cross section
Sum of (n,nd) and (n,d)
MT=205 (n,xt) cross section
MT=206 (n,xHe3) cross section
Calculated by the POD code /6/.
MT=207 (n,xa) cross section
Sum of (n,na) and (n,a)
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
The OPTMAN /5/ & POD /6/ calculations.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
MT= 17 (n,3n) reaction
MT= 22 (n,na) reaction
MT= 28 (n,np) reaction
MT= 32 (n,nd) reaction
Neutron spectra calculated by the POD code /6/.
MT= 51-90 (n,n') reaction
Neutron angular distributions calculated by
OPTMAN /5/ & POD /6/.
MT= 91 (n,n') reaction
Neutron spectra calculated by the POD code /6/.
MT= 203 (n,xp) reaction
MT= 204 (n,xd) reaction
MT= 205 (n,xt) reaction
MT= 206 (n,xHe3) reaction
MT= 207 (n,xa) reaction
Light-ion spectra calculated by the POD code /6/.
MF=12 Gamma-ray multiplicities
MT= 3 Non-elastic gamma emission
Calculated by the POD code /6/.
MF=14 Gamma-ray angular distributions
MT= 3 Non-elastic gamma emission
Assumed to be isotropic.
MF=15 Gamma-ray spectra
MT= 3 Non-elastic gamma emission
Calculated by the POD code /6/.
***************************************************************
* Nuclear Model Calculations with POD Code /6/ *
***************************************************************
1. Theoretical models
The POD code is based on the spherical optical model, the
distorted-wave Born approximaiton (DWBA), one-component exciton
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-
tical model. With the preequilibrium model, semi-empirical
pickup and knockout process can be taken into account for
composite-particle emission. The gamma-ray emission from the
compound nucleus can be calculated within the framework of the
exciton model. The code is capable of reading in particle
transmission coefficients calculated by separate spherical or
coupled-channel optical model code. In this evaluation, the OPTMAN
code /5/ was employed for neutrons, while the ECIS code
/7/ was adopted for charged particles.
2. Optical model & parameters
Neutrons:
Model: The coupled-channel method based on the rigid-rotor
model was adopted. Deformation parameter beta2 was
taken from ref./8/
OMP : Coupled-channel optical potential /9/ was applied.
Protons:
Model: Spherical
OMP : Koning and Delaroche /10/
Deuterons:
Model: Spherical
OMP : Bojowald et al. /11/
Tritons:
Mode: Spherical
OMP : Becchetti and Greenlees /12/
He-3:
Model: Spherical
OMP : Becchetti and Greenlees /12/
Alphas:
Model: Spherical
OMP : A simplified folding model potential /1/
(The nucleon OMP was taken from Ref./9/.)
3. Level scheme of Xe-136
------------------------------------
No. Ex(MeV) J PI CC
------------------------------------
0 0.00000 0 + *
1 1.31303 2 + *
2 1.69439 4 +
3 1.89170 6 +
4 2.12569 4 +
5 2.26153 6 +
6 2.28953 2 +
7 2.41475 2 +
8 2.44440 5 +
9 2.46502 4 +
10 2.55988 4 +
11 2.58240 0 +
------------------------------------
Levels above 2.59240 MeV are assumed to be continuous.
4. Level density parameters
Energy-dependent parameters of Mengoni-Nakajima /13/ were used
----------------------------------------------------------
Nuclei a* Pair Esh T E0 Ematch Elv_max
1/MeV MeV MeV MeV MeV MeV MeV
----------------------------------------------------------
Xe-137 17.403 1.025 -3.891 0.732 -0.237 6.024 1.220
Xe-136 16.658 2.058 -4.823 0.873 0.098 8.676 2.582
Xe-135 17.198 1.033 -3.799 0.704 0.072 5.487 1.968
Xe-134 16.449 2.073 -2.814 0.742 0.503 7.492 2.409
I -136 16.564 0.000 -5.026 0.776 -0.734 4.541 0.579
I -135 15.861 1.033 -5.868 0.979 -0.961 8.260 1.133
I -134 16.358 0.000 -4.805 0.906 -2.236 7.123 0.210
Te-134 16.449 2.073 -7.083 0.955 1.209 7.728 2.398
Te-133 16.992 1.041 -5.785 0.914 -0.835 7.754 0.308
Te-132 16.240 2.089 -4.641 0.884 0.085 8.791 1.925
----------------------------------------------------------
5. Gamma-ray strength functions
M1, E2: Standard Lorentzian (SLO)
E1 : Generalized Lorentzian (GLO) /14/
6. Preequilibrium process
Preequilibrium is on for n, p, d, t, He-3, and alpha.
Preequilibrium capture is on.
References
1) Macklin, R.L.: ORNL-TM-10766 (1988).
2) Fogelberg, B. et al.: Phys. Rev., C31, 2041 (1985).
3) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,
Part A", Academic Press (1981).
4) Kondaiah, E. et al.: Nucl. Phys., A120, 329 (1968).
5) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005).
6) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).
7) J.Raynal, CEA Saclay report, CEA-N-2772 (1994).
8) S.Raman et al., At. Data and Nucl. Data Tables 78, 1 (1995)
9) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).
10) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).
11) Bojowald et al., Phys. Rev. C 38, 1153 (1988).
12) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization
Phenomena in Nuclear Reactions," p.682, The University
of Wisconsin Press (1971).
13) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151
(1994).
14) M.Brink, Ph.D thesis, Oxford University, 1955.