54-Xe-136

 54-Xe-136 JAEA       EVAL-FEB22 S.Kunieda, A.Ichihara, K.Shibata+
                      DIST-MAY10                       20100316   
----JENDL-4.0         MATERIAL 5461                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
History                                                           
09-11 Re-evaluation was performed for JENDL-4.0                   
10-03 Compiled by S.Kunieda                                       
                                                                  
MF= 1 General information                                         
                                                                  
  MT=451 Descriptive data and directory                           
                                                                  
                                                                  
MF= 2 Resonance parameters                                        
                                                                  
  MT=151 Resolved and unresolved resonance parameters             
                                                                  
    - Resolved resonance region (MLBW formula): below 490 keV     
        Resonance parameters in JENDL-3.3 consisted of the data   
      measured by Macklin/1/ and by Fogelberg et al./2/.          
      The data of the 1st and 2nd resonance levels are a neutron  
      capture area and a radiation width measured by Macklin. The 
      data of the other levels except the 1st level are g*(neutron
      width) and the total spin j measured by Fogelberg et al.,   
      and contain 4 s-wave levels and 31 p-wave levels. The       
      neutron width of the 1st level at 2154 eV was derived from  
      the neutron capture area using the radiation width of the   
      2nd level measured by Macklin. The neutron widths of the    
      remaining 35 levels from 18.393 to 480.750 kev were derived 
      using the j-values given by Fogelberg et al. The average    
      radiation width of 122.5 meV was adopted for all the        
      resonance levels except the 1st and 2nd levels. The         
      scattering radius was taken from the graph (fig. 1, Part A) 
      by Mughabghab et al./3/  A negative resonance level was     
      added at -822.03 eV, and the above average radiation width  
      was determined so as to reproduce the thermal capture cross 
      section of 260+-20 mb given by mughabghab et al.            
        In JENDL-4, the energy and neutron width of the negative  
      level were modified so as to reproduce the thermal capture  
      cross section of 130+-15 mb at 0.0253 eV measured by        
      Kondaiah et al./4/                                          
                                                                  
    - No unresolved resonance parameters are given.               
                                                                  
     Thermal cross sections & resonance integrals at 300 K        
      ----------------------------------------------------------  
                       0.0253 eV           res. integ. (*)        
                        (barns)              (barns)              
      ----------------------------------------------------------  
       Total          5.42750E+00                                 
       Elastic        5.29746E+00                                 
       n,gamma        1.30039E-01           8.54723E-02           
      ----------------------------------------------------------  
      (*) Integrated from 0.5 eV to 10 MeV.                       
                                                                  
                                                                  
MF= 3 Neutron cross sections                                      
                                                                  
  MT=  1 Total cross section                                      
    Sum of partial cross sections.                                
                                                                  
  MT=  2 Elastic scattering cross section                         
    The OPTMAN /5/ & POD /6/ calculations.                        
                                                                  
  MT=  3 Non-elastic cross section                                
    Sum of partial non-elastic cross sections.                    
                                                                  
  MT=  4,51-91 (n,n') cross section                               
    The OPTMAN /5/ & POD /6/ calculations.                        
                                                                  
  MT= 16 (n,2n) cross section                                     
  MT= 17 (n,3n) cross section                                     
  MT= 22 (n,na) cross section                                     
  MT= 28 (n,np) cross section                                     
  MT= 32 (n,nd) cross section                                     
                                                                  
                                                                  
  MT=102 Capture cross section                                    
    Calculated by the POD code /6/. The value of gamma-ray        
    strength function was determined to follow JENDL-3.3's cross  
    sections around 500 keV.                                      
                                                                  
  MT=103 (n,p) cross section                                      
  MT=104 (n,d) cross section                                      
  MT=105 (n,t) cross section                                      
  MT=106 (n,He3) cross section                                    
  MT=107 (n,a) cross section                                      
    Calculated by the POD code /6/.                               
                                                                  
  MT=203 (n,xp) cross section                                     
    Sum of (n,np) and (n,p)                                       
                                                                  
  MT=204 (n,xd) cross section                                     
    Sum of (n,nd) and (n,d)                                       
                                                                  
  MT=205 (n,xt) cross section                                     
  MT=206 (n,xHe3) cross section                                   
    Calculated by the POD code /6/.                               
                                                                  
  MT=207 (n,xa) cross section                                     
    Sum of (n,na) and (n,a)                                       
                                                                  
                                                                  
MF= 4 Angular distributions of emitted neutrons                   
                                                                  
  MT=  2 Elastic scattering                                       
    The OPTMAN /5/ & POD /6/ calculations.                        
                                                                  
                                                                  
MF= 6 Energy-angle distributions of emitted particles             
                                                                  
  MT= 16 (n,2n) reaction                                          
  MT= 17 (n,3n) reaction                                          
  MT= 22 (n,na) reaction                                          
  MT= 28 (n,np) reaction                                          
  MT= 32 (n,nd) reaction                                          
    Neutron spectra calculated by the POD code /6/.               
                                                                  
  MT= 51-90 (n,n') reaction                                       
    Neutron angular distributions calculated by                   
    OPTMAN /5/ & POD /6/.                                         
                                                                  
  MT= 91 (n,n') reaction                                          
    Neutron spectra calculated by the POD code /6/.               
                                                                  
  MT= 203 (n,xp) reaction                                         
  MT= 204 (n,xd) reaction                                         
  MT= 205 (n,xt) reaction                                         
  MT= 206 (n,xHe3) reaction                                       
  MT= 207 (n,xa) reaction                                         
    Light-ion spectra calculated by the POD code /6/.             
                                                                  
                                                                  
MF=12 Gamma-ray multiplicities                                    
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Calculated by the POD code /6/.                               
                                                                  
                                                                  
MF=14 Gamma-ray angular distributions                             
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Assumed to be isotropic.                                      
                                                                  
                                                                  
MF=15 Gamma-ray spectra                                           
                                                                  
  MT=  3 Non-elastic gamma emission                               
    Calculated by the POD code /6/.                               
                                                                  
                                                                  
                                                        
                                                                  
***************************************************************   
*        Nuclear Model Calculations with POD Code /6/     *       
***************************************************************   
1. Theoretical models                                             
 The POD code is based on the spherical optical model, the        
distorted-wave Born approximaiton (DWBA), one-component exciton   
preequilibrium model, and the Hauser-Feshbach-Moldauer statis-    
tical model.  With the preequilibrium model, semi-empirical       
pickup and knockout process can be taken into account for         
composite-particle emission.  The gamma-ray emission from the     
compound nucleus can be calculated within the framework of the    
exciton model.  The code is capable of reading in particle        
transmission coefficients calculated by separate spherical or     
coupled-channel optical model code. In this evaluation, the OPTMAN
code /5/ was employed for neutrons, while the ECIS code           
/7/ was adopted for charged particles.                            
                                                                  
2. Optical model & parameters                                     
  Neutrons:                                                       
    Model: The coupled-channel method based on the rigid-rotor    
           model was adopted. Deformation parameter beta2 was     
           taken from ref./8/                                     
    OMP  : Coupled-channel optical potential /9/ was applied.     
  Protons:                                                        
    Model: Spherical                                              
    OMP  : Koning and Delaroche /10/                              
  Deuterons:                                                      
    Model: Spherical                                              
    OMP  : Bojowald et al. /11/                                   
  Tritons:                                                        
    Mode: Spherical                                               
    OMP : Becchetti and Greenlees /12/                            
  He-3:                                                           
    Model: Spherical                                              
    OMP  : Becchetti and Greenlees /12/                           
  Alphas:                                                         
    Model: Spherical                                              
    OMP  : A simplified folding model potential /1/               
           (The nucleon OMP was taken from Ref./9/.)              
                                                                  
3. Level scheme of Xe-136                                         
  ------------------------------------                            
   No.   Ex(MeV)     J  PI      CC                                
  ------------------------------------                            
    0    0.00000     0   +       *                                
    1    1.31303     2   +       *                                
    2    1.69439     4   +                                        
    3    1.89170     6   +                                        
    4    2.12569     4   +                                        
    5    2.26153     6   +                                        
    6    2.28953     2   +                                        
    7    2.41475     2   +                                        
    8    2.44440     5   +                                        
    9    2.46502     4   +                                        
   10    2.55988     4   +                                        
   11    2.58240     0   +                                        
  ------------------------------------                            
  Levels above  2.59240 MeV are assumed to be continuous.         
                                                                  
                                                                  
4. Level density parameters                                       
 Energy-dependent parameters of Mengoni-Nakajima /13/ were used   
  ----------------------------------------------------------      
  Nuclei    a*    Pair    Esh     T     E0    Ematch Elv_max      
          1/MeV   MeV     MeV    MeV    MeV    MeV    MeV         
  ----------------------------------------------------------      
  Xe-137  17.403  1.025 -3.891  0.732 -0.237  6.024  1.220        
  Xe-136  16.658  2.058 -4.823  0.873  0.098  8.676  2.582        
  Xe-135  17.198  1.033 -3.799  0.704  0.072  5.487  1.968        
  Xe-134  16.449  2.073 -2.814  0.742  0.503  7.492  2.409        
  I -136  16.564  0.000 -5.026  0.776 -0.734  4.541  0.579        
  I -135  15.861  1.033 -5.868  0.979 -0.961  8.260  1.133        
  I -134  16.358  0.000 -4.805  0.906 -2.236  7.123  0.210        
  Te-134  16.449  2.073 -7.083  0.955  1.209  7.728  2.398        
  Te-133  16.992  1.041 -5.785  0.914 -0.835  7.754  0.308        
  Te-132  16.240  2.089 -4.641  0.884  0.085  8.791  1.925        
  ----------------------------------------------------------      
                                                                  
5. Gamma-ray strength functions                                   
   M1, E2: Standard Lorentzian (SLO)                              
   E1    : Generalized Lorentzian (GLO) /14/                      
                                                                  
6. Preequilibrium process                                         
   Preequilibrium is on for n, p, d, t, He-3, and alpha.          
   Preequilibrium capture is on.                                  
                                                                  
                                                                  
References                                                        
 1) Macklin, R.L.: ORNL-TM-10766 (1988).                          
 2) Fogelberg, B. et al.: Phys. Rev., C31, 2041 (1985).           
 3) Mughabghab, S.F. et al.: "Neutron Cross Sections, Vol. I,     
    Part A", Academic Press (1981).                               
 4) Kondaiah, E. et al.: Nucl. Phys., A120, 329 (1968).           
 5) E.Soukhovitski et al., JAERI-Data/Code 2005-002 (2005).       
 6) A.Ichihara et al., JAEA-Data/Code 2007-012 (2007).            
 7) J.Raynal, CEA Saclay report, CEA-N-2772 (1994).               
 8) S.Raman et al., At. Data and Nucl. Data Tables 78, 1 (1995)   
 9) S.Kunieda et al., J. Nucl. Sci. Technol. 44, 838 (2007).      
10) A.J.Koning, J.P.Delaroche, Nucl. Phys. A713, 231 (2003).      
11) Bojowald et al., Phys. Rev. C 38, 1153 (1988).                
12) F.D.Becchetti,Jr., G.W.Greenlees, "Polarization               
    Phenomena in Nuclear Reactions," p.682, The University        
    of Wisconsin Press (1971).                                    
13) A.Mengoni, Y.Nakajima, J. Nucl. Sci. Technol. 31, 151         
     (1994).                                                      
14) M.Brink, Ph.D thesis, Oxford University, 1955.