30-Zn- 64
30-Zn- 64 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 3025
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
N.Iwamoto.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region: below 130 keV
Resolved resonance parameters were taken from Garg et al.
/1/,/2/, supplimented by the data of Julien et al.
/3/. The negative resonance was placed so as to
reproduce the cross sections at thermal energy recommended
by Mughabghab /4/.
Unresolved resonance region : 130 keV - 800 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /5/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /6/ and CCONE /7/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 4.7155e+00
Elastic 3.9280e+00
n,gamma 7.8746e-01 1.4225e+00
n,alpha 1.1083e-05
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /7/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /7/.
MT= 22 (n,na) cross section
Calculated with CCONE code /7/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /7/.
MT= 28 (n,np) cross section
Calculated with CCONE code /7/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /7/.
MT= 44 (n,n2p) cross section
Calculated with CCONE code /7/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /7/.
MT=102 Capture cross section
Calculated with CCONE code /7/.
MT=103 (n,p) cross section
Calculated with CCONE code /7/.
MT=104 (n,d) cross section
Calculated with CCONE code /7/.
MT=105 (n,t) cross section
Calculated with CCONE code /7/.
MT=106 (n,He3) cross section
Calculated with CCONE code /7/.
MT=107 (n,a) cross section
Calculated with CCONE code /7/.
The cross section at thermal energy was evaluated so as to
reproduce the value recommended by Mughabghab/8/.
MT=108 (n,2a) cross section
Calculated with CCONE code /7/.
MT=111 (n,2p) cross section
Calculated with CCONE code /7/.
MT=112 (n,pa) cross section
Calculated with CCONE code /7/.
MT=115 (n,pd) cross section
Calculated with CCONE code /7/.
MT=117 (n,da) cross section
Calculated with CCONE code /7/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /7/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /7/.
MT= 22 (n,na) reaction
Calculated with CCONE code /7/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /7/.
MT= 28 (n,np) reaction
Calculated with CCONE code /7/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /7/.
MT= 44 (n,n2p) reaction
Calculated with CCONE code /7/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /7/.
MT=102 Capture reaction
Calculated with CCONE code /7/.
*****************************************************************
Nuclear Model Calculation with CCONE code /7/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,4,9 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./9/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./10/
deuteron omp: Lohr,J.M. and Haeberli,W./11/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./12/
alpha omp: Huizenga,J.R. and Igo,G./13/ (+)
(+) omp parameters were modified.
2) Two-component exciton model/14/
* Global parametrization of Koning-Duijvestijn/15/
was used.
* Gamma emission channel/16/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/17/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/18/.
Parameters are shown in Table 2.
* Gamma-ray strength function of standard Lorentzian form
was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Zn-64
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 0.99155 2 + *
2 1.79935 2 +
3 1.91031 0 +
4 2.30671 4 + *
5 2.60943 0 +
6 2.73653 4 +
7 2.79380 2 +
8 2.97979 3 +
9 2.99838 3 - *
10 3.00569 2 +
11 3.07120 0 +
12 3.07777 4 +
13 3.09458 0 +
14 3.18678 1 +
15 3.19680 0 +
16 3.20591 3 +
17 3.24000 0 +
18 3.26199 1 +
19 3.28500 0 +
20 3.29718 2 +
21 3.30685 4 +
22 3.32180 1 +
23 3.36595 1 +
24 3.36982 3 +
25 3.41500 0 +
26 3.42515 1 +
27 3.45230 0 +
28 3.45852 0 +
29 3.46500 0 +
30 3.50000 2 +
31 3.53870 0 +
32 3.54700 0 +
33 3.55230 4 +
34 3.58700 0 +
35 3.59720 0 +
36 3.60200 0 +
37 3.60650 0 +
38 3.62070 0 +
39 3.62700 0 +
40 3.62840 0 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Zn- 65 10.1000 1.4884 0.5412 1.0267 -1.5890 8.8932
Zn- 64 9.4000 3.0000 -0.5895 1.3122 -2.1371 14.8774
Zn- 63 9.7000 1.5119 -1.1338 1.1722 -1.7835 10.7456
Cu- 64 9.0000 0.0000 -0.2574 1.1602 -3.0278 8.1946
Cu- 63 9.6000 1.5119 -0.7921 1.1891 -2.1218 11.0245
Cu- 62 8.5999 0.0000 -1.6978 1.3701 -3.8967 11.5298
Ni- 63 9.7000 1.5119 0.1580 1.0041 -0.8012 7.9800
Ni- 62 8.7000 3.0480 -0.7667 1.2725 -0.5439 12.7980
Ni- 61 9.6000 1.5364 -1.2520 1.1257 -1.0688 9.6338
Ni- 60 8.5000 3.0984 -2.2445 1.4738 -1.5214 16.9599
Ni- 59 8.9095 1.5623 -3.0814 1.4171 -2.2044 15.1107
--------------------------------------------------------
Table 3. Gamma-ray strength function for Zn- 65
--------------------------------------------------------
* E1: ER = 16.23 (MeV) EG = 3.27 (MeV) SIG = 41.40 (mb)
ER = 19.19 (MeV) EG = 5.98 (MeV) SIG = 56.10 (mb)
* M1: ER = 10.20 (MeV) EG = 4.00 (MeV) SIG = 2.99 (mb)
* E2: ER = 15.67 (MeV) EG = 5.33 (MeV) SIG = 1.55 (mb)
--------------------------------------------------------
References
1) Garg,J.B. et al.: Phys. Rev. C23, 671 (1981a).
2) Garg,J.B. et al.: Phys. Rev. C23, 683 (1981b).
3) Julien,J. et al.: Nucl. Phys. A132, 129 (1969).
4) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
5) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
6) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
7) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
8) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition:
Resonance Parameters and Thermal Cross Sections. Z=1-100",
Elsevier Science (2006).
9) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
10) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
11) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
12) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
13) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
14) Kalbach,C.: Phys. Rev. C33, 818 (1986).
15) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
16) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
17) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
18) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).