30-Zn- 66
30-Zn- 66 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 3031
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
N.Iwamoto.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region: below 140 keV
Resolved resonance parameters were taken from Garg et al.
/1/, supplimented by the data of Julien et al. /2/.
The negative resonance was placed so as to reproduce the
cross sections at thermal energy recommended by Mughabghab
/3/.
Unresolved resonance region : 140 keV - 800 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /4/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /5/ and CCONE /6/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 5.5568e+00
Elastic 4.9389e+00
n,gamma 6.1796e-01 9.6139e-01
n,alpha 2.0427e-09
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /6/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /6/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /6/.
MT= 22 (n,na) cross section
Calculated with CCONE code /6/.
MT= 24 (n,2na) cross section
Calculated with CCONE code /6/.
MT= 28 (n,np) cross section
Calculated with CCONE code /6/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /6/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /6/.
MT=102 Capture cross section
Calculated with CCONE code /6/.
MT=103 (n,p) cross section
Calculated with CCONE code /6/.
MT=104 (n,d) cross section
Calculated with CCONE code /6/.
MT=105 (n,t) cross section
Calculated with CCONE code /6/.
MT=106 (n,He3) cross section
Calculated with CCONE code /6/.
MT=107 (n,a) cross section
Calculated with CCONE code /6/.
The cross section at thermal energy was evaluated so as to
reproduce the value recommended by Mughabghab/7/.
MT=108 (n,2a) cross section
Calculated with CCONE code /6/.
MT=111 (n,2p) cross section
Calculated with CCONE code /6/.
MT=112 (n,pa) cross section
Calculated with CCONE code /6/.
MT=115 (n,pd) cross section
Calculated with CCONE code /6/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /6/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /6/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /6/.
MT= 22 (n,na) reaction
Calculated with CCONE code /6/.
MT= 24 (n,2na) reaction
Calculated with CCONE code /6/.
MT= 28 (n,np) reaction
Calculated with CCONE code /6/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /6/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /6/.
MT=102 Capture reaction
Calculated with CCONE code /6/.
*****************************************************************
Nuclear Model Calculation with CCONE code /6/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,4,9 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./8/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./9/
deuteron omp: Lohr,J.M. and Haeberli,W./10/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./11/
alpha omp: Huizenga,J.R. and Igo,G./12/
(+) omp parameters were modified.
2) Two-component exciton model/13/
* Global parametrization of Koning-Duijvestijn/14/
was used.
* Gamma emission channel/15/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/16/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/17/.
Parameters are shown in Table 2.
* Gamma-ray strength function of standard Lorentzian form
was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Zn-66
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 1.03939 2 + *
2 1.87294 2 +
3 2.37253 0 +
4 2.45113 4 + *
5 2.70380 3 +
6 2.76340 2 -
7 2.76569 4 +
8 2.78055 2 +
9 2.82718 3 - *
10 2.93845 2 +
11 3.03000 0 +
12 3.07793 4 +
13 3.10537 0 +
14 3.21279 2 +
15 3.22730 3 -
16 3.22931 1 +
17 3.24140 3 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Zn- 67 10.1000 1.4660 1.8467 0.9472 -1.4178 7.9477
Zn- 66 9.4000 2.9542 0.7967 1.1121 -0.5948 11.1189
Zn- 65 10.1000 1.4884 0.5412 1.0267 -1.5890 8.8932
Zn- 64 9.4000 3.0000 -0.5895 1.3122 -2.1371 14.8774
Cu- 66 8.9000 0.0000 0.9150 0.9194 -1.3650 4.6903
Cu- 65 8.5438 1.4884 0.5181 1.1578 -1.5153 9.2308
Cu- 64 9.0000 0.0000 -0.2574 1.1602 -3.0278 8.1946
Cu- 63 9.6000 1.5119 -0.7921 1.1891 -2.1218 11.0245
Ni- 65 9.4300 1.4884 1.2284 0.9166 -0.3419 6.7235
Ni- 64 9.2000 3.0000 0.5302 1.0082 0.8446 9.1343
Ni- 63 9.7000 1.5119 0.1580 1.0041 -0.8012 7.9800
Ni- 62 8.7000 3.0480 -0.7667 1.2725 -0.5439 12.7980
Ni- 61 9.6000 1.5364 -1.2520 1.1257 -1.0688 9.6338
--------------------------------------------------------
Table 3. Gamma-ray strength function for Zn- 67
--------------------------------------------------------
* E1: ER = 16.23 (MeV) EG = 3.27 (MeV) SIG = 41.40 (mb)
ER = 19.19 (MeV) EG = 5.98 (MeV) SIG = 56.10 (mb)
* M1: ER = 10.09 (MeV) EG = 4.00 (MeV) SIG = 2.74 (mb)
* E2: ER = 15.51 (MeV) EG = 5.31 (MeV) SIG = 1.51 (mb)
--------------------------------------------------------
References
1) Garg,J.B. et al.: Phys. Rev. C24, 1922 (1981)
2) Julien,J. et al.: Nucl. Phys. A132, 129 (1969).
3) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
4) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
5) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
6) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
7) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth Edition:
Resonance Parameters and Thermal Cross Sections. Z=1-100",
Elsevier Science (2006).
8) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
9) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
10) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
11) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
12) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
13) Kalbach,C.: Phys. Rev. C33, 818 (1986).
14) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
15) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
16) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
17) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).