30-Zn- 68
30-Zn- 68 JAEA EVAL-Dec09 N.Iwamoto
DIST-MAY10 20100119
----JENDL-4.0 MATERIAL 3037
-----INCIDENT NEUTRON DATA
------ENDF-6 FORMAT
History
09-12 The resolved resonance parameters were evaluated by
N.Iwamoto.
The data above the resolved resonance region were evaluated
and compiled by N.Iwamoto.
MF= 1 General information
MT=451 Descriptive data and directory
MF= 2 Resonance parameters
MT=151 Resolved and unresolved resonance parameters
Resolved resonance region: below 110 keV
Resolved resonance parameters were taken from Garg et al.
/1/. The negative resonance was placed so as to
reproduce the cross sections at thermal energy recommended
by Mughabghab /2/.
Unresolved resonance region : 110 keV - 800 keV
The unresolved resonance paramters (URP) were determined by
ASREP code /3/ so as to reproduce the evaluated total and
capture cross sections calculated with optical model code
OPTMAN /4/ and CCONE /5/. The unresolved parameters
should be used only for self-shielding calculation.
Thermal cross sections and resonance integrals at 300 K
----------------------------------------------------------
0.0253 eV res. integ. (*)
(barn) (barn)
----------------------------------------------------------
Total 5.6196e+00
Elastic 4.5541e+00
n,gamma 1.0655e+00 3.0917e+00
----------------------------------------------------------
(*) Integrated from 0.5 eV to 10 MeV.
MF= 3 Neutron cross sections
MT= 1 Total cross section
Sum of partial cross sections.
MT= 2 Elastic scattering cross section
Obtained by subtracting non-elastic scattering cross sections
from total cross section.
MT= 4 (n,n') cross section
Calculated with CCONE code /5/.
MT= 16 (n,2n) cross section
Calculated with CCONE code /5/.
MT= 17 (n,3n) cross section
Calculated with CCONE code /5/.
MT= 22 (n,na) cross section
Calculated with CCONE code /5/.
MT= 28 (n,np) cross section
Calculated with CCONE code /5/.
MT= 32 (n,nd) cross section
Calculated with CCONE code /5/.
MT= 51-91 (n,n') cross section
Calculated with CCONE code /5/.
MT=102 Capture cross section
Calculated with CCONE code /5/.
MT=103 (n,p) cross section
Calculated with CCONE code /5/.
MT=104 (n,d) cross section
Calculated with CCONE code /5/.
MT=105 (n,t) cross section
Calculated with CCONE code /5/.
MT=106 (n,He3) cross section
Calculated with CCONE code /5/.
MT=107 (n,a) cross section
Calculated with CCONE code /5/.
MT=111 (n,2p) cross section
Calculated with CCONE code /5/.
MF= 4 Angular distributions of emitted neutrons
MT= 2 Elastic scattering
Calculated with CCONE code /5/.
MF= 6 Energy-angle distributions of emitted particles
MT= 16 (n,2n) reaction
Calculated with CCONE code /5/.
MT= 17 (n,3n) reaction
Calculated with CCONE code /5/.
MT= 22 (n,na) reaction
Calculated with CCONE code /5/.
MT= 28 (n,np) reaction
Calculated with CCONE code /5/.
MT= 32 (n,nd) reaction
Calculated with CCONE code /5/.
MT= 51-91 (n,n') reaction
Calculated with CCONE code /5/.
MT=102 Capture reaction
Calculated with CCONE code /5/.
*****************************************************************
Nuclear Model Calculation with CCONE code /5/
*****************************************************************
Models and parameters used in the CCONE calculation
1) Optical model
* coupled channels calculation
coupled levels: 0,1,6,8 (see Table 1)
* optical model potential
neutron omp: Kunieda,S. et al./6/ (+)
proton omp: Koning,A.J. and Delaroche,J.P./7/
deuteron omp: Lohr,J.M. and Haeberli,W./8/
triton omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
He3 omp: Becchetti Jr.,F.D. and Greenlees,G.W./9/
alpha omp: Huizenga,J.R. and Igo,G./10/
(+) omp parameters were modified.
2) Two-component exciton model/11/
* Global parametrization of Koning-Duijvestijn/12/
was used.
* Gamma emission channel/13/ was added to simulate direct
and semi-direct capture reaction.
3) Hauser-Feshbach statistical model
* Width fluctuation correction/14/ was applied.
* Neutron, proton, deuteron, triton, He3, alpha and gamma
decay channel were taken into account.
* Transmission coefficients of neutrons were taken from
optical model calculation.
* The level scheme of the target is shown in Table 1.
* Level density formula of constant temperature and Fermi-gas
model were used with shell energy correction/15/.
Parameters are shown in Table 2.
* Gamma-ray strength function of standard Lorentzian form
was used for E1 transition.
For M1 and E2 transitions the standard Lorentzian form was
adopted. The prameters are shown in Table 3.
------------------------------------------------------------------
Tables
------------------------------------------------------------------
Table 1. Level Scheme of Zn-68
-------------------
No. Ex(MeV) J PI
-------------------
0 0.00000 0 + *
1 1.07737 2 + *
2 1.65594 0 +
3 1.88314 2 +
4 2.33829 2 +
5 2.37030 3 +
6 2.41744 4 + *
7 2.51020 1 +
8 2.75038 3 - *
9 2.82158 2 +
10 2.95590 4 -
11 2.96014 3 -
12 3.00920 3 +
13 3.08120 4 -
14 3.10245 0 +
15 3.15360 3 +
16 3.16010 1 +
17 3.16400 2 -
18 3.18415 1 +
19 3.18660 2 +
20 3.28144 4 +
21 3.28709 2 +
22 3.34609 1 +
23 3.38500 0 +
24 3.40090 2 +
25 3.42504 3 -
26 3.42942 2 -
27 3.45874 5 -
28 3.48730 1 +
-------------------
*) Coupled levels in CC calculation
Table 2. Level density parameters
--------------------------------------------------------
Nuclide a* Pair Eshell T E0 Ematch
1/MeV MeV MeV MeV MeV MeV
--------------------------------------------------------
Zn- 69 10.3000 1.4446 2.6429 0.8785 -1.1966 7.2801
Zn- 68 9.2000 2.9104 1.9541 1.0616 -0.5162 10.3271
Zn- 67 10.1000 1.4660 1.8467 0.9472 -1.4178 7.9477
Zn- 66 9.4000 2.9542 0.7967 1.1121 -0.5948 11.1189
Cu- 68 8.7000 0.0000 1.7100 0.9200 -1.5524 4.8000
Cu- 67 8.8000 1.4660 1.4788 0.9871 -0.6304 7.2000
Cu- 66 8.9000 0.0000 0.9150 0.9194 -1.3650 4.6903
Cu- 65 8.5438 1.4884 0.5181 1.1578 -1.5153 9.2308
Ni- 67 9.8452 1.4660 1.4345 0.8229 0.0958 5.8000
Ni- 66 9.0648 2.9542 1.3371 0.9505 1.0392 8.3785
Ni- 65 9.4300 1.4884 1.2284 0.9166 -0.3419 6.7235
Ni- 64 9.2000 3.0000 0.5302 1.0082 0.8446 9.1343
Ni- 63 9.7000 1.5119 0.1580 1.0041 -0.8012 7.9800
--------------------------------------------------------
Table 3. Gamma-ray strength function for Zn- 69
--------------------------------------------------------
* E1: ER = 16.23 (MeV) EG = 3.27 (MeV) SIG = 41.40 (mb)
ER = 19.19 (MeV) EG = 5.98 (MeV) SIG = 56.10 (mb)
* M1: ER = 10.00 (MeV) EG = 4.00 (MeV) SIG = 2.52 (mb)
* E2: ER = 15.36 (MeV) EG = 5.28 (MeV) SIG = 1.47 (mb)
--------------------------------------------------------
References
1) Garg,J.B. et al.: Phys. Rev. C25, 1808 (1982).
2) Mughabghab,S.F.: "Atlas of Neutron Resonances, Fifth
Edition: Resonance Parameters and Thermal Cross Sections.
Z=1-100", Elsevier Science (2006).
3) Kikuchi,Y. et al.: JAERI-Data/Code 99-025 (1999)
[in Japanese].
4) Soukhovitski,E.Sh. et al.: JAERI-Data/Code 2005-002 (2004).
5) Iwamoto,O.: J. Nucl. Sci. Technol., 44, 687 (2007).
6) Kunieda,S. et al.: J. Nucl. Sci. Technol. 44, 838 (2007).
7) Koning,A.J. and Delaroche,J.P.: Nucl. Phys. A713, 231 (2003)
[Global potential].
8) Lohr,J.M. and Haeberli,W.: Nucl. Phys. A232, 381 (1974).
9) Becchetti Jr.,F.D. and Greenlees,G.W.: Ann. Rept.
J.H.Williams Lab., Univ. Minnesota (1969).
10) Huizenga,J.R. and Igo,G.: Nucl. Phys. 29, 462 (1962).
11) Kalbach,C.: Phys. Rev. C33, 818 (1986).
12) Koning,A.J., Duijvestijn,M.C.: Nucl. Phys. A744, 15 (2004).
13) Akkermans,J.M., Gruppelaar,H.: Phys. Lett. 157B, 95 (1985).
14) Moldauer,P.A.: Nucl. Phys. A344, 185 (1980).
15) Mengoni,A. and Nakajima,Y.: J. Nucl. Sci. Technol., 31, 151
(1994).