4-Be- 9

  4-BE-  9 JAERI      EVAL-AUG84 K.SHIBATA                        
 JAERI-M 84-226       DIST-SEP89 REV1-OCT90                       
----JENDL-3.2         MATERIAL  425                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
HISTORY                                                           
84-08 REEVALUATED FOR JENDL-3 BY K.SHIBATA.                       
      DETAILS OF THE EVALUATION ARE GIVEN IN REF/1/.              
89-01 MODIFIED BY CONSIDERING NEUTRON EMISSION SPECTRA            
90-10 MF=5, MT=16, 24, 46, 47: SPECTRA AT THRESHOLD ENERGIES WERE 
      MODIFIED.                                                   
                                                                  
MF=1          GENERAL INFORMATION                                 
  MT=451   DESCRIPTIVE DATA                                       
                                                                  
MF=2          RESONANCE PARAMETER                                 
  MT=151   SCATTERING RADIUS ONLY.                                
                                                                  
MF=3          CROSS SECTIONS                                      
        CALCULATED 2200M/S CROSS SECTIONS AND RES. INTEGRALS      
                       2200M/S (B)     RES. INTEG. (B)            
          TOTAL        6.1586              -                      
          ELASTIC      6.1510              -                      
          CAPTURE      0.0076           0.0034                    
                                                                  
  MT=1     SIG-T                                                  
        BELOW 1 EV, SUM OF SIG-EL AND SIG-CAP.  BETWEEN 1 EV AND  
        830 KEV, THE CROSS SECTION WAS CALCULATED ON THE BASIS OF 
        THE R-MATRIX THEORY.  THE R-MATRIX PARAMETERS WERE        
        OBTAINED SO AS TO GIVE THE BEST FIT TO THE EXPERIMENTAL   
        DATA /2/-/6/.  ABOVE 830 KEV, BASED ON THE MEASUREMENTS   
        /5/,/7/,/8/.                                              
  MT=2     SIG-EL                                                 
        BELOW 1 EV, SIG-EL = 6.151 BARNS.                         
        ABOVE 1 EV, THE CROSS SECTION WAS OBTAINED BY SUBTRACTING 
        THE REACTION CROSS SECTION FROM THE TOTAL CROSS SECTION.  
  MT=3     NON-ELASTIC                                            
        SUM OF MT=4,16,24,102,103,103,105,107                     
  MT=4     TOTAL INELASTIC                                        
        SUM OF MT=51 AND 52.                                      
  MT=6, 7, 16, 51, 52                                             
        THE SHAPE OF THE INELASTIC SCATTERING CROSS SECTION WAS   
        OBTAINED FROM THE STATISTICAL MODEL CALCULATION.  THE     
        ABSOLUTE VALUE WAS DETERMINED SO THAT A SUM OF THE        
        INELASTIC SCATTERING AND (N,A1) REACTION CROSS SECTIONS   
        MIGHT BE EQUAL TO THE (N,2N) REACTION CROSS SECTION IN    
        JENDL-2.  OPTICAL POTENTIAL PARAMETERS OF AGEE AND ROSEN  
        /9/ WERE USED.                                            
           V = 49.3 - 0.33E, WS = 5.75   , VSO = 5.5    (MEV)     
           R = 1.25        , RS = 1.25   , RSO = 1.25   (FM)      
           A = 0.65        , B  = 0.70   , ASO = 0.65   (FM)      
        LEVEL SCHEME                                              
           NO         ENERGY(MEV)    SPIN-PARITY                  
         G.S.           0.0             3/2-                      
            1           1.68            1/2+                      
            2           2.429           5/2-                      
            3           2.800           1/2+                      
            4           3.06            5/2+                      
            5           4.7             3/2+                      
            6           6.8             7/2-                      
            7           7.9             5/2- *)                   
            8           11.28           9/2- *)                   
            9           11.81           7/2- *)                   
           10           13.79           5/2- *)                   
           11           14.396          3/2- *)                   
         *) SPIN-PARITY VALUE WAS TENTATIVELY ASSIGNED.           
         ALL THE EXCITED LEVELS EXCEPT 7.9 AND 13.79 MEV ONES     
         DECAY BY EMITTING NEUTRONS, CONTRIBUTING TO THE (N,2N)   
         CROSS SECTION.  WITHIN THE FRAMEWORK OF THE CURRENT      
         ENDF/B FORMAT, DIFFERENT MT NUMBERS WERE ASSIGNED TO     
         THESE LEVELS.                                            
                   MT NO.               LEVEL                     
                     6                   2ND+3RD+4TH              
                     7                   6TH                      
                    16                   1ST+5TH+8TH+9TH+11TH+CONT
                    51                   7TH                      
                    52                   10TH                     
      ************************************************************
      *  THE (N,2N) CROSS SECTIONS IS GIVEN AS A SUM OF MT=6, 7, *
      *  16, AND 24.                                             *
      ************************************************************
  MT=24    (N,2N ALPHA)                                           
        THIS IS THE CROSS SECTION FOR THE (N,A1) REACTION.  THE   
        1ST EXCITED LEVEL OF HE-6 DECAYS BY EMITTING 2 NEUTRONS.  
        THE (N,A1) CROSS SECTION WAS CALCULATED WITH THE          
        STATISTICAL MODEL.                                        
        ALPHA POTENTIAL PARAMETERS ARE THE FOLLOWING /10/:        
           V = 125.0  , WS = 15.0  , VSO = 0.0       (MEV)        
           R = 1.56   , RS = 1.56  , RC  = 1.22      (FM)         
           A = 0.50   , B  = 0.11                    (FM)         
        THE CROSS SECTION WAS NORMALIZED TO THE DATA OF           
        PERROUD AND SELLEM /11/ AT 14 MEV.                        
  MT=46, 47   SIG-IN                                              
        SAME AS MT=6, 7, RESPECTIVELY.                            
  MT=102   CAPTURE                                                
        THERMAL CROSS SECTION OF 7.6E-3 BARN WAS OBTAINED FROM    
        THE RECOMMENDATION BY MUGHABGHAB ET AL./12/               
        1/V CURVE WAS ASSUMED OVER THE WHOLE ENERGY RANGE.        
  MT=103   (N,P)                                                  
        CALCULATED WITH THE STATISTICAL MODEL.                    
        PROTON POTENTIAL PARAMETERS ARE THE FOLLOWING /13/:       
           V = 59.5 - 0.36E, WS = 12.0 + 0.07E, VSO = 4.9   (MEV) 
           R = 1.24        , RS = 1.36        , RSO = 1.2   (FM)  
           RC= 1.3                                          (FM)  
           A = 0.63        , B  = 0.35        , ASO = 0.31  (FM)  
        THE CROSS SECTION WAS NORMALIZED TO THE EXPERIMENTAL DATA 
        OF AUGUSTSON AND MENLOVE /14/, WHO MEASURED DELAYED       
        NEUTROS, BY TAKING ACCOUNT OF THE BRANCHING RATIO         
        OF 49.5% FOR LI-9 => BE-9* => 2A + N.                     
  MT=104   (N,D)                                                  
        BASED ON THE EXPERIMENTAL DATA OF SCOBEL /15/.            
  MT=105   (N,T)                                                  
        SUM OF MT=740 AND 741.                                    
  MT=107   (N,A0)                                                 
        BASED ON THE EXPERIMENTAL DATA /10/,/11/,/16/-/19/.       
  MT=251   MU-BAR                                                 
        CALCULATED FROM THE DATA IN FILE4.                        
  MT=700, 701   (N,T0),(N,T1)                                     
        CALCULATED WITH THE STATISTICAL MODEL.                    
        TRITON POTENTIAL PARAMETERS ARE THE FOLLOWING /20/:       
           V = 140.0  , WS = 7.5  , VSO = 6.0              (MEV)  
           R = 1.20   , RS = 2.69 , RSO = 1.20 , RC = 1.30 (FM)   
           A = 0.45   , B  = 0.36 , ASO = 0.7              (FM)   
        NORMALIZATION WAS TAKEN SO THAT THE TOTAL (N,T) CROSS     
        SECTION MIGHT BE CONSISTENT WITH THE EXPERIMENTAL DATA    
        OF BOEDY ET AL./21/                                       
                                                                  
MF=4          ANGULAR DISTRIBUTIONS                               
  MT=2                                                            
        1.0E-5 EV TO 50 KEV   ISOTROPIC IN CM.                    
        50 KEV TO 14 MEV      BASED ON THE EXPERIMENTAL DATA      
                              /22/-/27/.                          
        14 MEV TO 20 MEV      OPTICAL-MODEL CALCULATIONS USING    
                              THE POTENTIAL PARAMETERS OF         
                              AGEE AND ROSEN /9/.                 
  MT=6                                                            
        LEGENDRE COEFFICIENTS WERE DERIVED FROM THE EXPERIMENTAL  
        DATA /27/,/28/.                                           
  MT=7                                                            
        STATISTICAL MODEL CALCULATION                             
  MT=16                                                           
        KALBACH-MANN SYSTEMATICS/31/                              
  MT=24, 46, 47                                                   
        CALCULATED BY ASSUMING THE TWO-STEP SEQUENTIAL REACTION   
        /29/.                                                     
                                                                  
MF=5          ENERGY DISTRIBUTION                                 
  MT=16                                                           
        EVAPORATION PLUS 3-BODY PHASE SPACE                       
  MT=24, 46, 47                                                   
        CALCULATED BY ASSUMING THE TWO-STEP SEQUENTIAL REACTION   
        /29/.                                                     
                                                                  
MF=12         PHOTON-PRODUCTION MULTIPLICITIES                    
  MT=102                                                          
        BASED ON THE MEASUREMENT OF JURNEY /30/.                  
  MT=701                                                          
        M=1.0                                                     
                                                                  
MF=14         PHOTON ANGULAR DISTRIBUTIONS                        
  MT=102                                                          
        ASSUMED TO BE ISOTROPIC.                                  
  MT=701                                                          
        ISOTROPIC                                                 
                                                                  
REFERENCES                                                        
 1) SHIBATA, K.: JAERI-M 84-226 (1984).                           
 2) BOCKELMAN, C.K.: PHYS. REV. 80 (1950) 1011.                   
 3) HIBDON, C.T. AND LANGSDORF, JR., A.: PHYS. REV. 98 (1955) 223.
 4) BILPUCH, E.G. ET AL.: TAKEN FROM EXFOR (1962).                
 5) SCHWARTZ, R.B. ET AL.: BULL. AM. PHYS. SOC. 16 (1971) 495.    
 6) CABE, J AND CANCE, M.: CEA-R-4524 (1973).                     
 7) FOSTER, JR. D.G. AND GLASGOW, D.W.: PHYS. REV. C3 (1971) 576. 
 8) AUCHAMPAUGH, G.F. ET AL.: NUCL. SCI. ENG. 69 (1979) 30.       
 9) AGEE, F.P. AND ROSEN, L.: LA-3538-MS (1966).                  
10) SHIBATA, K. AND SHIRATO, S.: J. PHYS. SOC. JPN. 52 (1983) 3748
11) PERROUD, J.P. AND SELLEM, CH.: NUCL. PHYS. A227 (1974) 330.   
12) MUGHABGHAB, S.F. ET AL.: NEUTRON CROSS SECTIONS VOL.1,        
    ACADEMIC PRESS, 1981.                                         
13) VOTAVA, H.J. ET AL.: NUCL. PHYS. A204 (1973) 529.             
14) AUGUSTSON, R.H. AND MENLOVE, H.O.: NUCL. SCI. ENG. 54(1974)190
15) SCOBEL, W.: Z. NATURFORSCH. A24 (1969) 289.                   
16) BATTAT, M.E. AND RIBE, F.L.: NUCL. PHYS. 89 (1953) 80.        
17) STELSON, P.H. AND CAMPBELL, E.C.: NUCL. PHYS. 106 (1957) 1252.
18) BASS, R. ET AL.: NUCL. PHYS. 23 (1961) 122.                   
19) PAIC, G. ET AL.: NUCL. PHYS. A96 (1967) 476.                  
20) LUEDECKE, H. ET AL.: NUCL. PHYS. A109 (1968) 676.             
21) BOEDY, Z.T. ET AL.: PROC. INT. CONF. NUCLEAR DATA FOR SCIENCE 
    AND TECHNOLOGY, ANTWERP 1982, (1983), P.368.                  
22) MARION, J.B. ET AL.: PHYS. REV. 114 (1959) 1584.              
23) LEVIN, J.S. AND CRANBERG, L.: TAKEN FROM EXFOR (1960).        
24) PHILLIPS, D.D.: TAKEN FROM EXFOR (1961).                      
25) LANE, R.O. ET AL.: ANN. PHYS. 12 (1961) 135.                  
26) LANE, R.O. ET AL.: PHYS. REV. 133B (1964) 409.                
27) HOGUE , H.H. ET AL.: NUCL. SCI. ENG. 68 (1978) 38.            
28) BABA, M. ET AL.: PROC. INT. CONF. NEUTRON PHYSICS AND NUCLEAR 
    DATA FOR REACTORS AND OTHER APPLIED PURPOSES, HARWELL 1978,   
    (1979), P.198.                                                
29) BEYNON, T.D. AND OASTLER, A.J.: ANN. NUCL. ENERGY 6(1979)537. 
30) JURNEY, E.T.: PROC. THIRD SYMP. NEUTRON CAPTURE GAMMA RAYS,   
    BNL 1978, (1979), P.46.                                       
31) KALBACH, C. AND MANN, F.M.: PHYS. REV. C23 (1981) 112.