92-U -235

 92-U -235 Data Eng.+ Eval-Mar00 H.Matsunobu, T.Kawano, T.Ohsawa  
                      DIST-MAR02 REV4-FEB02            20020214   
----JENDL-3.3         MATERIAL 9228                               
-----INCIDENT NEUTRON DATA                                        
------ENDF-6 FORMAT                                               
                                                                  
HISTORY                                                           
87-03 Newly evaluated for JENDL-3 by the following evaluators.    
       K.Hida (NAIG)              gamma-ray production data       
       Y.Nakajima (JAERI)         resolved resonances             
       T.Nakagawa (JAERI)         unresolved resonances           
       H.Matsunobu (SAEI)         other quantities                
88-08 Data were partly modified to final JENDL-3 data.            
       Nu-bar, Unresolved resonance parameters.                   
89-02 FP yields were replaced with JNDC FP Decay File version-2.  
      Data were compiled in ENDF-5 format by T.Nakagawa (JAERI)   
93-08 JENDL-3.2.                                                  
       H.Matsunobu (SAEI): nu-p, fission cross section            
       T.Ohsawa (Kinki Univ.): fission spectrum                   
       Y.Kikuchi and T.Nakagawa (JAERI): resonance parameters     
      Compiled by T.Nakagawa (NDC/JAERI)                          
00-03 JENDL-3.3.                                                  
       H.Matsunobu (Data Engineering): nu-p, cross sections       
       T.Kawano (Kyushu Univ.): Neutron spectra of (n,n'), (n,2n),
                (n,3n), direct/semi-direct capture.               
       T.Ohsawa (Kinki Univ.): fission spectrum                   
01-04 Compiled by T.Nakagawa (NDC/JAERI)                          
                                                                  
     *****   Modified parts from JENDL-3.2  ********************  
      (1,452), (1,455), (1,456)                                   
      (2,151)                                                     
      (3,1), (3,2), (3,16), (3,17), (3,18), (3,102)               
      (5,16), (5,17), (5,18), (5,91), (5,455)                     
     ***********************************************************  
                                                                  
02-01 Covariances were taken from JENDL-3.2 covariance file except
      for MF/MT=31/455, 31/456, 33/18, and 33/102.                
                                                                  
MF=1  General Information                                         
  MT=451  Comments and dictionary                                 
  MT=452  Total number of neutrons per fission                    
      Sum of nu-p (MT=456) and nu-d (MT=455).                     
                                                                  
  MT=455  Delayed neutron data                                    
      Evaluated by using the Least Square Method on the basis of  
      the following experimental data in each energy region.      
                                                                  
      Thermal region: Keepin/1/, Conant/2/, Synetos/3/,           
                      Reeder/4/, Borzakov/5/                      
      50 keV - 7 MeV: Keepin/1/, Maksyutenko/6/, Masters/7/,      
                      Krick/8/, Evans/9/, Cox/10/,                
                      Besant/11/, Gudkov/12/, Loaiza/13/          
      14 - 15 MeV   : Keepin/14/                                  
                                                                  
      Decay constants at the thermal energy were adopted from     
      Keepin et al. /15/                                          
                                                                  
  MT=456  Number of prompt neutrons                               
      Evaluated on the basis of the following experimental data:  
      The thermal value was derived by Averaging the experimental 
      data by Gwin et al. /16/ with the Maxwellian neutron        
      spectrum (kT=0.0253 eV).                                    
          below 60 eV          Gwin et al./16/                    
          50 eV   - 500 eV     Gwin et al./17/                    
          0.5 keV - 5.15 MeV   Gwin et al./18/                    
          5.15 MeV- 15 MeV     Frehaut et al./19/                 
          15 MeV  - 20 MeV     Frehaut et al./20/, Howe /21/      
      The standard value of 3.756 of Cf-252 nu-p was used in the  
      present evaluation.                                         
                                                                  
MF=2  Resonance Parameters                                        
  MT=151                                                          
  1) Resolved resonances : below 2.25 keV                         
      Reich-Moore Parameters evaluated by Leal et al. /22/ were   
      adopted. They are the same as ENDF/B-VI.5.                  
                                                                  
  2) Unresolved resonance parameters : 2.25 - 30 keV              
      By using ASREP /23/, the evaluated total, capture and       
      fission cross sections were fitted by adjusting S0, S1 and  
      fission width. The fission cross section was based on the   
      experimental data of Weston and Todd /24/. The capture      
      cross section was calculated as (Sig-f)*Alpha, where alpha  
      values were determined from the experimental data of Corvi  
      et al. /25/. The total cross section was evaluated on the   
      basis of the experimental data by Uttley et al. /26/ and    
      Boeckhoff et al. /27/                                       
                                                                  
      Initial parameters: (* searched parameters)                 
         D-obs       = 0.466 eV /22/                              
       * R           = 9.88 fm (same as JENDL-3.2)                
       * S0          = 1.06E-4 /22/                               
       * S1          = 1.80E-4 (same as JENDL-3.2)                
         Gamma-g     = 0.038 eV /22                               
       * Gamma-f(3-) = 0.213 eV, Nu = 2 /22/                      
       * Gamma-f(4-) = 0.146 eV, Nu = 2 /22/                      
       * Gamma-f(+)  = taken from Ref /28/ (same as JENDL-3.2)    
                                                                  
      2200-m/s cross sections and calculated res. integrals.      
                      2200 m/s        res. integ.                 
         elastic       15.08 b             -                      
         fission      585.1  b            276 b                   
         capture       98.69 b            141 b                   
         total        698.9  b             -                      
                                                                  
MF=3  Neutron Cross Sections                                      
  Above 30 keV: Data were evaluated as follows.                   
  MT=1    Total                                                   
      Evaluated on the basis of the experimental data by Uttley et
      al. /26/, Boeckoff et al. /27/, Schwartz et al. /29/,       
      Green et al. /30/, Foster and Glasgow /31/, Poenitz et al.  
      /32/, and Poenitz and Whalen /33/.                          
  MT=2    Elastic scattering                                      
      Evaluated on the basis of the experimental data by Smith    
      /34/, Smith and Whalen /35/ and Knitter et al. /36/ in      
      the energy range from 0.3 to 2.3 MeV.  In the remaining     
      energy range it was derived by subtracting sum of partial   
      cross sections from total cross section.                    
  MT=4,51-79,91  Inelastic scattering cross sections              
      Evaluated on the basis of experimental data and calculation 
      with optical and statistical models, and coupled channel    
      theory taking into account of deformation of nucleus.  The  
      calculated inelastic scattering cross sections were         
      decreased by factor of 0.9 below about 2 MeV so as to be in 
      agreement with Smith et al. /37/.                           
                                                                  
      Deformed optical potential parameters were adopted from the 
      recommendation by Haouat et al. /38/.                       
         V  = 46.4  - 0.3*En,  Ws = 3.3 + 0.4*En, Vso= 6.2  (MeV) 
         r0 = 1,26,            rs = 1.26,         rso= 1.12  (fm) 
         a0 = 0.63,            b  = 0.52,         aso= 0.47  (fm) 
         beta-2 = 0.22,    beta-4 = 0.08                          
      The spherical optical potential parameters were obtained by 
      fitting the experimental data of the total cross section.   
         V  = 40.90 - 0.04*En, Ws = 6.5 + 0.25*En,Vso= 7.0  (MeV) 
         r0 = 1.312,           rs = 1.375,        rso= 1.320 (fm) 
         a  = 0.490,           b  = 0.454,        ao = 0.470 (fm) 
                                                                  
      Statistical model calculation with CASTHY code /39/.        
         Competing processes : fission (n,2n), (n,3n), (n,4n).    
         Level fluctuation was considered.                        
                                                                  
      The level scheme taken from Refs./40,41/.                   
               No.     Energy(keV)   Spin-Parity                  
               g.s.         0.0        7/2 -                      
                1           0.075      1/2 +                      
                2          13.038      3/2 +                      
                3          46.347      9/2 -                      
                4          51.697      5/2 +                      
                5          81.732      7/2 +                      
                6         103.2       11/2 -                      
                7         129.292      5/2 +                      
                8         150.4        9/2 +                      
                9         170.7       13/2 -                      
               10         171.378      7/2 +                      
               11         197.1       11/2 +                      
               12         225.40       9/2 +                      
               13         249.1       15/2 -                      
               14         291.1       11/2 +                      
               15         294.7       13/2 +                      
               16         332.818      5/2 +                      
               17         338.8       17/2 -                      
               18         357.2       15/2 +                      
               19         367.05       7/2 +                      
               20         368.8       13/2 +                      
               21         393.184      3/2 +                      
               22         414.8        9/2 +                      
               23         426.71       5/2 +                      
               24         445.7        7/2 +                      
               25         474.27       7/2 +                      
               26         510.0        9/2 +                      
               27         533.2        9/2 +                      
               28         607.7       11/2 +                      
               29         633.04       5/2 -                      
      Continuum levels assumed above 650 keV.                     
      The level density parameters : Gilbert and Cameron /42/.    
                                                                  
  MT=16,17,37 (n,2n), (n,3n), (n,4n)                              
      Evaluated on the basis of the following experimental data   
      and calculation with evaporation model.                     
         (n,2n)            : Frehaut et al. /43/                  
         (n,3n) and (n,4n) : Veeser and Arthur /44/               
  MT=18   Fission                                                 
      Derived with simultaneous evaluation/45/ on the basis of    
      experimental data on the fission cross sections of U-233,   
      U-235, -238, Pu-239, -240 and -241 in the energy range from 
      30 keV to 20 MeV.                                           
      The experimental data of U-235 considered in this evaluation
      are as follows:                                             
         Perez et al. /46/, Poenitz /47,48/, Czirr and Sidhu      
         /49,50,51/, Szabo and Marquette /52/, Barton et al.      
         /53/, Gwin et al. /54/, Cance and Grenier /55,56/,       
         Carlson and Patrick /57/, Kari /58/, Adamov et al.       
         /59/, Arlt et al. /60,61,62/, Wasson et al.              
         /63,64/, Li et al.  /65,66/, Mahdavi et al. /67/,        
         Carlson and Behrens /68/, Corvi et al. /25/, Alkhazov    
         et al. /69,70,71/, Azimi-Garakani and                    
         Bagheri-Darbandi /72/, Dushin et al.  /73/, Weston and   
         Todd /24/, Carlson et al. /74/, Herbach et al. /75/,     
         Schroder et al. /76/, Iwasaki et al.  /77/, Buleeva et   
         al. /78/, Filatenkov et al. /79/, Kalinin et al.         
         /80,81/, Johnson R.G. /82/, Merla et al.  /83/,          
         and Lisowski et al. /84/                                 
  MT=102  Capture                                                 
      Below 1 MeV, derived from the evaluated alpha value and     
      fission cross section below 1 MeV.  Alpha value was         
      evaluated on the basis of the experimental data by Hopkins  
      and Diven /85/ and by Beer and Kaeppeler /86/. As for the   
      fission cross section, the result by simultaneous evaluation
      was adopted.                                                
                                                                  
      Above 1 MeV, calculated with CASTHY code /39/. Direct and   
      semi-direct capture cross sections were calculated with     
      DSD code /87/ and added to the CASTHY calculation.          
                                                                  
MF=4  Angular Distributions of Secondary Neutrons                 
  MT=2, 51-79, 91     Calculated with CASTHY and ECIS codes.      
  MT=16,17,18,37      Isotropic in the lab system.                
                                                                  
MF=5  Energy Distributions of Secondary Neutrons                  
  MT=16,17,91                                                     
      Calculated with EGNASH /88,89/ on the basis of              
      preequilibrium and multi-step evaporation model.            
  MT=37                                                           
      Calculated with PEGASUS code /90/.                          
  MT=18                                                           
     DISTRIBUTIONS WERE CALCULATED WITH A MODIFIED MADLAND-NIX    
     MODEL WITH CONSIDERATION FOR MULTIMODAL NATURE OF THE FISSION
     PROCESS/91,92/.  THE COMPOUND NUCLEUS FORMATION CROSS SEC-   
     TIONS FOR FISSION FRAGMENTS WERE CALCULATED USING BECCHETTI- 
     GREENLEES POTENTIAL/93/.  THE IGNATYUK FORMULA/94/ WERE      
     USED TO GENERATE THE LEVEL DENSITY PARAMETERS. UP TO         
     3rd-CHANCE-FISSION WERE CONSIDERED AT HIGH INCIDENT NEUTRON  
     ENERGIES.                                                    
     A preequilibrium emission was taken into account above 10    
     MeV as described in Ref./95/. The prefission neutron         
     spectrum was calculated with the Feshbach-Kerman-Koonin      
     theory /96/.                                                 
                                                                  
       PARAMETERS ADOPTED FOR THERMAL-NEUTRON FISSION:            
          (S1: STANDARD-1, S2: STANDARD-2, SL: SUPERLONG MODES)   
          TOTAL AVERAGE FRAGMENT KINETIC ENERGY                   
                                          = 187 MEV FOR S1        
                                          = 167 MEV FOR S2        
                                          = 157 MEV FOR SL        
           AVERAGE ENERGY RELEASE                                 
                                          = 194.49 MEV FOR S1     
                                          = 184.86 MEV FOR S2     
                                          = 190.95 MEV FOR SL     
           AVERAGE MASS NUMBER OF LIGHT FF =  96                  
           AVERAGE MASS NUMBER OF HEAVY FF = 140                  
           LEVEL DENSITY OF THE LIGHT FF   = 10.31(S2), 11.43(S1) 
           LEVEL DENSITY OF THE HEAVY FF   = 8.89(S1), 13.25(S2)  
           MODE BRANCHING RATIO = 0.18342(S1), 0.81589(S2),       
                                  0.00069(SL)                     
       NOTE THAT THE PARAMETERS VARY WITH THE INCIDENT ENERGY     
       WITHIN THE INDICATED RANGE.                                
                                                                  
  MT=455                                                          
      Taken from Brady and England /97/. Group abundace parameters
      were adjusted so as to reproduce total delayed neutron      
      emission rate measured by Keepin /15/, Piksaikin /98/ and   
      East /99/.                                                  
                                                                  
MF=12  Photon Production Multiplicities (option 1)                
       Given for the following sections below 369.579 keV         
  MT=18    Fission                                                
      The thermal neutron-induced fission gamma spectrum          
      measured by Verbinski /100/ was adopted.                    
  MT=51-69 Inelastic Scattering                                   
      The photon branching data taken from /41/ were converted    
      to the photon multiplicities.                               
  MT=102   Capture                                                
      Calculated with GNASH /89/, where the pygmy resonance       
      was introduced /101/.                                       
                                                                  
MF=13  Photon Production Cross Sections                           
    MT=3   Non-elastic                                            
      Calculated with GNASH /89/ above 369.579 keV.               
      Verbinski's data /100/ were used up to 20 MeV.              
                                                                  
MF=14  Photon Angular Distributions                               
    MT=3,18,51-69,102                                             
      Isotropic distributions were assumed.                       
                                                                  
MF=15  Continuous Photon Energy Spectra                           
    MT=3,102                                                      
      Calculated with GNASH /89/                                  
    MT=18                                                         
      Experimental data by Verbinski /100/ were adopted.          
                                                                  
MF=31 Covariances of Average Number of Neutrons per Fission       
  MT=452                                                          
     Constructed from MT=455 and 456.                             
  MT=455                                                          
     Based on experimental data./102/   A chi-value was 0.16.     
  MT=456                                                          
     Based on experimental data./102/   A chi-value was 0.88.     
                                                                  
MF=33 Covariances of Cross Sections (ref.103)                     
  MT=1                                                            
   Based on experimental data.  A chi-value was 2.39.             
  MT=2                                                            
   Constructed from MT=1, 4, 16, 17, 18, 37 and 102.              
  MT=4, 51-79, 91                                                 
   The covariances were obtained by using kalman.                 
   A chi-value was 1.4                                            
  MT=16                                                           
   Based on experimental data.  A chi-value was 0.281             
  MT=17                                                           
   Based on experimental data.  A chi-value was 0.146.            
  MT=18                                                           
   Based on the simultaneous evaluation /45/.                     
  MT=37                                                           
   Based on experimental data.  A chi-value was 1.0.              
  MT=102                                                          
   Based on experimental data on alpha values.                    
   A chi-value was 0.82.                                          
                                                                  
 Note that no covariance is given in the resonance region below   
 30 keV.                                                          
                                                                  
MF=34 Covariances of Angular Distributions (ref.103)              
  MT=2                                                            
   The covariances of p1 coefficients were obtained by using      
   kalman.  A chi-value was 0.22.                                 
                                                                  
MF=35 Covariances of Energy Distributions                         
  MT=18                                                           
   The covariances were obtained by using kalman./104/            
                                                                  
                                                                  
References                                                        
 1) Keepin G.R. et al.: J. Nucl. Ener, 6, 1 (1957).               
 2) Conant J.F. and Palmedo P.F.: Nucl. Sci. Eng., 44, 173 (1971).
 3) Synetos S. and Williams J.G.: INDC(NDS)-107, 183 (1979).      
 4) Reeder P.L. and Williams J.G: Phys. Rev., 28C, 1740 (1983).   
 5) Borzakov S.B. et al.: AE,  79, 231 (1995).                    
 6) Maksyutenko B.P.: Sov. Phys. JETP, 8, 565 (1959).             
 7) Masters C.F. et al.: Nucl. Sci. Eng., 36, 202 (1969).         
 8) Krick M.S. and Evans A.E.: Nucl. Sci. Eng., 47, 311 (1972).   
 9) Evans A.E. and Thorpe M.M.: Nucl. Sci. Eng., 50,  80 (1973).  
10) Cox S.A.: ANL/NDM-5 (1974)                                    
11) Besant C.B. et al.: British Nucl. Ener. Soc., 16, 161 (1977). 
12) Gudkov A.N. et al.: AE,  66, 100 (1989).                      
13) Loaiza D. et al.: ANS, 76, 361 (1997).                        
14) Keepin G.R.: LA-4320, (1969).                                 
15) Keepin G.R., et al.: Phys. Rev., 107, 1044 (1957).            
16) Gwin R. et al.: Nucl. Sci. Eng., 87, 381 (1984). and          
    EXFOR 12906.003                                               
17) Gwin R. et al: ORNL-TM-6246 (1978).                           
18) Gwin R. et al: Nucl. Sci. Eng., 94, 365 (1986).               
19) Frehaut J. et al.: 1982 Antwerp Conf., 78 (1982).             
20) Frehaut J. et al.: EXFOR 20506.002 (1980), 21685.002 (1980).  
21) Howe R.E.: Nucl. Sci. Eng., 86, 157 (1984).                   
22) Leal L.C. et al.: Nucl. Sci. Eng., 131, 230 (1999).           
23) Kikuchi Y., et al.: JAERI-Data/Code 99-025 (1999).            
24) Weston L.W. and Todd J.H.: Nucl. Sci. Eng., 88, 567(1984).    
25) Corvi F. et al.: NEANDC(E) 232U, vol. 3, 5 (1981).            
26) Uttley C.A. et al.: 1966 Paris Conf., Vol.1, p.165 (1966).    
27) Boeckhoff K.H. et al.: J. Nucl. Energy, 26, 91 (1972).        
28) Kikuchi Y. and An S.: J. Nucl. Sci. Technol., 7, 157 (1970).  
29) Schwartz R.B. et al.: Nucl. Sci. Eng., 54, 322 (1974).        
30) Green F.L. et al.: WAPD-TM-1073 (1973).                       
31) Foster D.G. and Glasgow D.W.:Phys. Rev., C3, 576 (1971).      
32) Poenitz W.P. et al.: Nucl. Sci. Eng., 78, 333 (1981).         
33) Poenitz W.P. and Whalen J.F.: ANL/NDM-80 (1983).              
34) Smith A.B.: Nucl. Sci. Eng., 18, 126 (1964).                  
35) Smith A.B. and Whalen J.F.: Phys. Rev. Letters, 16, 526       
    (1966).                                                       
36) Knitter H.H. et al.: Zeit. Physik, 257, 108 (1972).           
37) Smith A.B. et al.: 1982 Antwerp Conf., 39 (1982).             
38) Haouat G. et al.: Nucl. Sci. Eng., 81, 491 (1982).            
39) Igarasi S. and Fukahori T.: JAERI 1321 (1991).                
40) Lederer C.M. and Shirley V.S.:  Table of Isotopes, 7th Ed.    
41) Schmorak M.R.: Nucl. Data Sheets, 40, 1 (1983).               
42) Gilbert A. and Cameron A.G.W.: Can. J. Phys., 43, 1446 (1965).
43) Frehaut J. et al.: Nucl. Sci. Eng., 74, 29 (1980).            
44) Veeser L.R. and Arther E.D.: 1978 Harwell Conf., p.1054(1978).
45) Kawano T., et al.: JAERI-Research 2000-004 (2000).            
46) Perez R.B. et al.: Nucl. Sci. Eng., 55, 203 (1974).           
47) Poenitz W.P.: Nucl. Sci. Eng., 53, 370 (1974).                
48) Poenitz W.P.: Nucl. Sci. Eng., 64, 894 (1977).                
49) Czirr J.B. and Sidhu G.S.: Nucl. Sci. Eng., 57, 18 (1975).    
50) Czirr J.B. and Sidhu G.S.: Nucl. Sci. Eng., 58, 371 (1975).   
51) Czirr J.B. and Sidhu G.S.: Nucl. Sci. Eng., 60, 383 (1976).   
52) Szabo I. and Marquette G.P.: ANL-76-90, p.208 (1976).         
53) Barton D.M. et al.: Nucl. Sci. Eng., 60, 369 (1976).          
54) Gwin R. et al.: Nucl. Sci. Eng., 59, 79 (1976),               
    EXFOR 10267.006                                               
55) Cance M. and Grenier G.: Nucl. Sci. Eng., 68, 197 (1978).     
56) Cance M. and Grenier G.: CEA-N-2194 (1981).                   
57) Carlson A.D. and Patrick B.H.: 1978 Harwell Conf., 880(1978). 
58) Kari K.: KfK-2673 (1978).                                     
59) Adamov V.M. et al.: 1979 Knoxville Conf., 995 (1979).         
60) Arlt R. et al.: 1979 Knoxville Conf., 990 (1979).             
61) Arlt R. et al.: 1983 Smolenice Conf., 174 (1983).             
62) Arlt R. et al.: Isotopenpraxis, 21, 344 (1985),               
    EXFOR 30475.002, 30558.002, and 30559.002 (?)                 
63) Wasson O.A. et al.: Nucl. Sci. Eng., 80, 282 (1982).          
64) Wasson O.A. et al.: Nucl. Sci. Eng., 81, 196 (1982).          
65) Li Jingwen et al.: 1982 Antwerp Conf., 55 (1982).             
66) Li Jingwen et al.: INDC(CPR)-009/L, P.3 (1986),               
    EXFOR 30721.002                                               
67) Mahdavi M. et al.: 1982 Antwerp Conf., 58 (1982).             
68) Carlson A.D. and Behrens J.W.: 1982 Antwerp Conf., 456(1982). 
69) Alkhazov I.D. et al.: 1983 Moskva Conf., 2, 201 (1983),       
    EXFOR 40911.002                                               
70) Alkhazov I.D. et al.: Jadernye Konstanty, 4, 19 (1986),       
    EXFOR 40927.003 (?)                                           
71) Alkhazov I.D. et al.: 1988 Mito Conf., P.145 (1988),          
    EXFOR 41013.003                                               
72) Azimi-Garakani D. and Bagheri-Darbandi M.: INDC(IRN)-003      
    (1983), EXFOR 30753.002 (*)                                   
73) Dushin V.N. et al.: Sov. Atom. Energy, 55, 656 (1984).        
74) Carlson A.D. et al.: Private Communication (1984),            
    EXFOR 10987.002, Paper Presented at Advisary Group Meeting on 
    Nuclear Standard Reference Data, Geel                         
75) Herbach C.M. et al.: INDC(GDR)-37 (1985), EXFOR : 30706.002   
    and 30706.003 (?)                                             
76) Schroder I.D. et al.: Trans. Amer. Nucl. Soc., 50, 154 (1985),
    EXFOR 12953.002 (*)                                           
77) Iwasaki T. et al.: 88 Mito Conf., P. 91 (1988),               
    EXFOR 22091.002                                               
78) Buleeva N.N. et al.: Atomnaja Energija, 65, 348 (1988),       
    EXFOR 40969.011                                               
79) Filatenkov A.A. et al.: Jadernye Konstanty, 2, 56 (1988),     
    EXFOR 40966.008 (*)                                           
80) Kalinin V.A. et al.: Atomnaja Energij, 64, 194 (1988),        
    EXFOR 40963.002                                               
81) Kalinin V.A. et al.: Atomnaja Energij, 71, 181 (1991),        
    EXFOR 41112.002                                               
82) Johnson R.G. et al.: Private Communication (1991),            
    EXFOR 12924.002                                               
83) Merla K. et al.: 1991 Juelich Conf., P.510 (1991),            
    EXFOR 22304.002 and 22304.006                                 
84) Lisowski P.W. et al.: Private Communication (1997) to         
    T.Fukahori(JAERI)                                             
85) Hopkins J.C. and Diven B.C.: Nucl. Sci. Eng., 12, 169 (1962). 
86) Beer H. and Kaeppeler F.: Phys. Rev. C20, 201 (1979)          
87) Kawano T.: private communication (1999).                      
88) Yamamuro N.: JAERI-M 90-006 (1990).                           
89) Young P.G. et al.: LA-6947 (1977).                            
90) Iijima S. et al.: JAERI-M 87-025, p. 337 (1987).              
     Nakagawa T., et al.: JAERI-Data/Code 99-031 (1999).          
91) Madland D.G. and Nix J.R.: Nucl. Sci. Eng., 81, 213 (1982).   
92) OHSAWA, T. ET AL.: TO BE PUBLISHED. SEE ALSO: OHSAWA, T. ET   
     AL.: NUCL. PHYS. A653, 17 (1999)                             
93) Becchetti Jr.F.D. and Greenlees G.W.: Phys. Rev., 182, 1190   
     (1969).                                                      
94) Ignatyuk A.V.: Sov. J. Nucl. Phys., 29, 450 (1979).           
95) Kawano T. et al.: Phys. Rev., C63, 034601 (2001).             
96) Feshbach H., et al.: Ann. Phys. (N.Y.) 125, 429 (1980).       
97) Brady M.C. and England T.R.: Nucl. Sci. Eng., 103, 129 (1989).
98) Piksaikin V.M.: private communication (1997).                 
99) East L.V., et al.: LA-4605-MS (1970).                         
100) Verbinski V.V. et al.: Phys. Rev., C7, 1173 (1973).          
101) Hida K.: JAERI-M 85-035, p. 166, (1985).                     
102) Matsunobu H.: Private communication (2001).                  
103) Shibata K. et al.: JAERI-Research 97-074 (1997).             
104) Kawano T. et al.: JAERI-Research 99-009 (1999).[in Japanese]